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Remark (L’Hospital rule)

If f and g are analytic at z0 and f (z0) = g(z0) = 0, then

lim
z→z0

f (z)

g(z)
= lim

z→z0

f ′(z)

g ′(z)

provided the limit on the right-hand side exists.



Example

Let f (z) =
z − sinh z

z2 sinh z
. Singularities of f occur at z = nπi , n ∈ Z\{0}. At

each z = nπi , n ∈ Z\{0}, since

nπi − sinh nπi = nπi 6= 0

and (
z2 sinh z

)′ ∣∣∣∣
z=nπi

= 2nπi sinh nπi + (nπi)2 cosh nπi

= (−1)n+1n2π2 6= 0,

z = nπi is a simple pole of f . Let

f (z) =
g(z)

z − nπi
, where g(z) =

(z − nπi)(z − sinh z)

z2 sinh z
.

Then

Res(f ; nπi) = lim
z→nπi

g(z) =
(−1)n+1i

nπ
.



Definition

For a continuous real-valued function f defined on [0,∞) or R, the
improper integral of f is defined by

ˆ ∞
0

f (x)dx = lim
R→∞

ˆ R

0
f (x)dx

and

ˆ ∞
−∞

f (x)dx = lim
R1→∞

ˆ 0

−R1

f (x)dx + lim
R2→∞

ˆ R2

0
f (x)dx , (1)

respectively, provided the limits on the right-hand sides of the
equalities exist. There is another value assigned to the improper
integral in (1), called the Cauchy principal value of the integral,
and defined by

P.V.

ˆ ∞
−∞

f (x)dx = lim
R→∞

ˆ R

−R
f (x)dx .



Example

To evaluate the integral

ˆ ∞
0

dx

x6 + 1
,

firstly, we let γR , R > 1, be the closed curve consisting of CR , the
upper-half circle centered at the origin with radius R, and lR , the line
segment from −R to R. And we assume that γR is counterclockwise
oriented. In the region enclosed by γR , there are three zeros of x6 + 1,
that is, c1 = e iπ/6, c2 = e i3π/6 = i and c3 = e i5π/6. By residue theorem,

ˆ
γR

dz

z6 + 1
= 2πi

3∑
k=1

Res

(
1

z6 + 1
; ck

)
.

For each k = 1, 2, 3, ck is a simple pole of
1

z6 + 1
, and we have

Res

(
1

z6 + 1
; ck

)
= lim

z→ck

z − ck
z6 + 1

=
1

6c5k
= −ck

6
.



Example (continued)

Therefore,
ˆ
γR

dz

z6 + 1
=

2π

3
.

Notice that

ˆ
lR

dz

z6 + 1
=

ˆ R

−R

dx

x6 + 1
.

And we have ∣∣∣∣ˆ
CR

dz

z6 + 1

∣∣∣∣ ≤ πR

R6 − 1
−→ 0 as R →∞.

By passing to the limit R →∞,

P.V.

ˆ ∞
−∞

dx

x6 + 1
=

2π

3
.

Since
1

x6 + 1
is even, we have

ˆ ∞
0

dx

x6 + 1
=
π

3
.



Example

Now, we want to evaluate integrals of the form

ˆ ∞
−∞

f (x) sin ax dx or

ˆ ∞
−∞

f (x) cos ax dx , a > 0.

In view of Euler’s formula, it is equivalent to consider

ˆ ∞
−∞

f (x)e iaxdx .

These integrals occur in the theory of Fourier analysis. Let γR , CR and lR be
defined as in the last example. If z1, ..., zN are all the singularities of f (z)e iaz in the
region enclosed by γR for R large. By residue theorem,

ˆ
γR

f (z)e iazdz = 2πi
N∑

k=1

Res
(
f (z)e iaz ; zk

)
.

Therefore, we have

ˆ R

−R
f (x)e iaxdx =

ˆ
lR

f (z)e iazdz

= 2πi
N∑

k=1

Res
(
f (z)e iaz ; zk

)
−
ˆ
CR

f (z)e iazdz . (2)



Example

To evaluate the integral

ˆ ∞
0

cos 2x

(x2 + 4)2
dx ,

we follow the last example with

f (z) =
1

(z2 + 4)2
and a = 2.

Notice that 2i is the only singularity of
e i2z

(z2 + 4)2
in the region

enclosed by γR for R large. Then (2) becomes

ˆ R

−R

e i2x

(x2 + 4)2
dx = 2πi Res

(
e i2z

(z2 + 4)2
; 2i

)
−
ˆ
CR

e i2z

(z2 + 4)2
dz .



Example (continued)

On one hand, 2i is a pole of order 2 of
e i2z

(z2 + 4)2
. By letting

e i2z

(z2 + 4)2
=

g(z)

(z − 2i)2
, where g(z) =

e i2z

(z + 2i)2
,

we have

Res

(
e i2z

(z2 + 4)2
; 2i

)
= g ′(2i) =

5

32e4i
.

On the other hand,∣∣∣∣ˆ
CR

e i2z

(z2 + 4)2
dz

∣∣∣∣ ≤ πR

(R2 − 4)2
−→ 0 as R →∞.

Therefore, by passing to the limit R →∞,



Example (continued)

P.V.

ˆ ∞
−∞

e i2x

(x2 + 4)2
dx = 2πi · 5

32e4i
=

5π

16e4
.

Taking the real parts on both sides above yields

P.V.

ˆ ∞
−∞

cos 2x

(x2 + 4)2
dx =

5π

16e4
.

Since
cos 2x

(x2 + 4)2
is even,

ˆ ∞
0

cos 2x

(x2 + 4)2
dx =

5π

32e4
.



Lemma (Jordan’s lemma)

Let CR be defined as in the last example. Suppose that

(i) f is analytic on {z ∈ C : Im z ≥ 0, |z | ≥ R0} for some R0 > 0;

(ii) For each R > R0, there is a positive constant MR such that

max
CR

|f | ≤ MR ,

and

lim
R→∞

MR = 0.

Then, for every a > 0,

lim
R→∞

ˆ
CR

f (z)e iazdz = 0.



Proof.

For a > 0, R > R0,

ˆ
CR

f (z)e iazdz =

ˆ π

0
f
(
Re iθ

)
e iaRe

iθ · iRe iθdθ

= iR

ˆ π

0
f
(
Re iθ

)
e−aR sin θe iaR cos θe iθdθ.

Thus, ∣∣∣∣ˆ
CR

f (z)e iazdz

∣∣∣∣ ≤ RMR

ˆ π

0
e−aR sin θdθ.

Notice that

ˆ π

0
e−aR sin θdθ = 2

ˆ π/2

0
e−aR sin θdθ.



Proof, continued.

By using the fact that sin θ ≥ 2θ

π
for θ ∈

[
0,
π

2

]
,

ˆ π/2

0
e−aR sin θdθ ≤

ˆ π/2

0
e−2aRθ/πdθ =

π

2aR

(
1− e−aR

)
≤ π

2aR
.

Therefore,∣∣∣∣ˆ
CR

f (z)e iazdz

∣∣∣∣ ≤ RMR ·
π

aR
−→ 0 as R →∞.



Example

To evaluate the integral

ˆ ∞
0

x sin 2x

x2 + 3
dx ,

we follow the argument for the integral

ˆ ∞
−∞

f (x) sin ax dx with

f (z) =
z

z2 + 3
and a = 2.

Notice that
√

3i is the only singularity of
ze i2z

z2 + 3
enclosed by γR

for R large. Then we have

ˆ R

−R

xe i2x

x2 + 3
dx = 2πi Res

(
ze i2z

z2 + 3
;
√

3i

)
−
ˆ
CR

ze i2z

z2 + 3
dz .



Example (continued)

Let

ze i2z

z2 + 3
=

g(z)

z −
√

3i
, where g(z) =

ze i2z

z +
√

3i
,

then

Res

(
ze i2z

z2 + 3
;
√

3i

)
= g

(√
3i
)

=
1

2e2
√
3
.

Moreover,

max
CR

|f | ≤ R

R2 − 3
−→ 0 as R →∞.

By Jordan’s lemma,

lim
R→∞

ˆ
CR

ze i2z

z2 + 3
dz = 0.



Example (continued)

Therefore,

P.V.

ˆ ∞
−∞

xe i2x

x2 + 3
dx = 2πi · 1

2e2
√
3

=
πi

e2
√
3
.

Taking the imaginary parts on both sides above yields

P.V.

ˆ ∞
−∞

x sin 2x

x2 + 3
dx =

π

e2
√
3
.

Since
x sin 2x

x2 + 3
is even,

ˆ ∞
0

x sin 2x

x2 + 3
dx =

π

2e2
√
3
.


