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In the following, we assume that f is analytic on a punctured disc
{z€eC:0< |z—2z]| < R} for some R > 0. f can be represented
as Laurent series

f(z) = Z cn(z—20)", 0<|z—2z|<R. (1)

n=—0o0

where ¢, € C, n € Z. There are three types of singularities:
removable singularities, poles, and essential singularities.



Definition

Let f be analytic on a punctured disc {z € C:0 < |z — z| < R}
for some R > 0 with representation (1).

(i) If ¢, =0 for all n < 0, then z; is called a removable
singularity.

(ii) If there is m € N such that c_, # 0 and ¢, = 0 for all
n < —m, then zy is called a pole of order m.

(i) If there are infinitely many c, # 0 with n < 0, then z is
called an essential singularity.

Example

() Let F(2) = S5

|
N

be defined on B1(0)\{0}, then 0 is a
pole of f.

(ii) Let f(z) = e/# be defined on B;(0)\{0}, then 0 is an
essential singularity of f.
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Proposition

If zy is a removable singularity of f, by defining

£(2) = {f(z), 0<|z—2z| <R,

Co, Z = 20,

then the function g is analytic on Br(z).
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Proof
Notice that

00
E Cn Z — Zo
n=0

has the radius of convergence not less than R, otherwise f cannot
be defined on Br(20)\{z0}. Since g is a power series, g is analytic
on its disc of convergence, which contains Bg(z). O
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If f is bounded and analytic on Br(zp)\{z0}. Then zy is a
removable singularity of f.
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Proof.

Notice that f can be represented as its Laurent series with the
coefficients

1 f(w)

= __ d SV
omi B Sy

w — zo)"tL

Cn
Yp (

where 7, is the circle centered at zy with radius p and
counterclockwise orientation, for any p > 0. For each n < 0,
1 sup|f| sup |f]
—_— . 27rp = .
o pn+1 p"

el <

Since p is arbitrary, we conclude that ¢, = 0 for all n < 0. That is,
7o is a removable singularity. O
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Proposition

If zy is a pole of f, then

lim |f(z)] = oo.

zZ—2Z)




If zg is a pole of order m, m € N, we have

[e.9]

f(z) = Z cn(z—29)", 0<|z—2z| <R,

n=—m

where c_,, # 0. By letting
g(Z) (Z_ZO mf ch mz_ZO 5

which is analytic on Bg(zp)\{zo}, then z is a removable singularity of g
with

lim g(z) = c.m #0.

zZ—2Z)

Therefore,
lg(2)|

f(z)| = ——=
)l = 2D

—> 00 as z— Zp.




Proposition

If zy is an essential singularity of f, then for any c € C, there is a
sequence zy — zy such that

|f(zx) —c| — 0 as k — oc.




Suppose on the contrary that there are ¢ € C, €9 > 0 and &y € (0, R) such
that

|f(z) — c| >eo forall z € Bs,(20)\{z0}-

We define
1
g(z) = —c " Bsy(20)\{z0}-
Then g is analytic and

6() < Ty =g S 2 on Bl=)\(ao}

Therefore, zp is a removable singularity of g. That is,

o0

g(z) = an(z — 20)" on Bs(20)\{z0}

n=0

for some a, € C, n € NU {0}.




Proof, continued.

If ap # 0, we have

lim g(z) = a0 #0,

z— 2y

which implies that

lim f(z)= lim —4+c=—+c.
z—29 z—2) g(z) ao

Therefore, f is bounded on B,(z9)\{zo} for some o > 0. Thus, again, zg
is a removable singularity of f, a contradiction. We must have agp = 0. Let
N be the least number (if it exists) such that

ag=a=..=ay_1=0 and ay#0.

Define

h(z) = anin(z — 20)"  on By (),
n=0

which is analytic with h(z) = ay # 0.




Proof, continued.
Then

o0

g(2)=(z-2)" Y anlz — 20)" " = (z — 2)"h(2)

n=N
on Bs,(z0)\{z0}. Moreover, on Bs,(z0)\{z0},

1 1
+c=—~——5+¢,
g(2) h(z)(z — z0)V
which implies that zg is a pole of order N of f, again a
contradiction. As a consequence, a, = 0 for all n € NU {0}, which
implies that

f(z) =

g(z) =0 on Bs,(20)\{z0}-

It is still impossible. We then complete the proof. [




Theorem (Picard’s theorem)

If zy is an essential singularity of f, then on any punctured
neighborhood of zy, f takes all complex values, with at most one
exception, infinitely often.




Example

Let f(z) = e'/?. Then 0 is an essential singularity of f. The value
0 is the only exceptional value which cannot be taken by f on any
punctured neighborhood of the point 0. For any non-zero complex
value ¢ = pe'®, we solve the equation
1 Lo (x—iy) i0 .
el/? = el =pe’=c, z=x+yi. (2)
We have
e/1el® = p and e/l = it

That is,

= = Inp and A —0+2nm, ne€gZ.
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Example (continued)

The last two equations imply

% = (Inp)® + (=6 + 2n7)?. (3)

2|

Thus, we know that for each n € Z, z, = x, + yai is a solution of
(2), where

Inp —0 + 2nm
Xn = and y, = % oL
(Inp)* + (=6 + 2nm)

(Inp)? + (—0 4 2n7)?

By (3), zy — 0 as n — oco. That is, ¢ can be taken by f infinitely
many times on any punctured neighborhood of 0.




Definition

Let f be defined on an open connected set ). The image of a set
X C € under f is defined by

f(X)={weC:w=f(z) for some z € X}.
The preimage of a set Y C f(Q2) under f is defined by

fHY)={z€C:f(z) =w for somew € Y}.

If Y = {c}, we may write f~1(Y) = f~(c) for simplicity.

Proposition

If f is non-constant, analytic, and f(zg) = ¢ for some zy € Q, then
there is € > 0 such that

B-(20) N £~1(c) = {zo}-




Near zy, f has the Taylor series

f(z) = f(z0) + Z ap(z—2z2)"=c+ Z an(z — 20)".

n=1 n=1

Since f is non-constant, there is a smallest N € N such that ay # 0. And we can
rewrite above representation as

o0
f(z)=c+ Y an(z—2)"=c+(z—2)"g(2),
n=N
where
oo
g(z) = Zamn(z — )"
n=0
Since ay # 0, there is € > 0 such that

g(z) #0 on B:(z),

which implies that

f(z) #c on B:(20)\{z0}-




Theorem

Suppose that f is analytic on an open connected set Q2. If
f(zn) =0, where z, € Q is a sequence of distinct points with a
limit point in S, then f is identical to 0.

| \

Proof.

By taking a subsequence, still indexed by n, zg = lim,_,o z,. By
the continuity of f, f(z) = 0. Suppose that f is not identical to 0,
by the isolation of points in preimage, there is € > 0 such that

B:(20) N f~1(0) = {0},

a contradiction. ]
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Corollary

Suppose that f and g are analytic on an open connected set Q. If
f(zn) = g(zn), where z, € Q is a sequence of distinct points with a
limit point in S, then f is identical to g.

| A

RENEILS

If f and F are analytic on Q' and QQ, respectively, where Q' C Q. If
f(z) = F(z) on ', then F is an analytic continuation of f. This
corollary guarantees that there can be only one such analytic
continuation. In particular, suppose that f; and f> are analytic on
Q1 and €y, respectively, and f; = f, on Q1 N # ¢. Then the
function

g(z) _ {fl(z) ifz € Ql\QQ,

fz(Z) if z € Qy,

on Q1 U, is an analytic continuation of both f; and f».




Theorem (reflection principle)

Let Q be an open connected set which is symmetric with respect to the
real axis. Q = QT UIUQ™, where Q* is the upper half part, Q= is the
lower half part, and | = QN R. If f is analytic on Q, then

f(z)=1(2), zeQ, (4)

if and only if f is real-valued on |.

Proof.
Suppose that (4) holds. For x € /, we have

fx) = f(x) = f(x),

which gives f(x) € R. On the other hand, if f is real-valued on /, we can
define

flz) ifzeQtul,

glz)=4¢
fz) ifzeQ .




Proof, continued.

Then g is analytic on Q7. For each zg € Q~, we have zy € Q*, and hence

oo

gz2)=) an(z —2)"

n=0

in a neighborhood of Zy in Q7. By the definition of g,
g(z) =) an(z - 2)"
n=0

in a neighborhood of zp in Q. That is, g is analytic on Q. And for each
xo € I, we have

oo

f(z) = ba(z—x0)"

n=0

in a neighborhood of xp, say Bs(xp). In addition, b,'s are all real since f
takes real values on /.




Proof, continued.

Hence,
g(z) =) bn(z = x0)" on Bs(x0) N (AT UT).
n=0
Moreover, for z € Bs(xp) N 27,
g(2) = bz —55)" =Y ba(z — x0)"-
n=0 n=0
We conclude that
g(z) = Z bn(z — x0)"  on Bs(xp).
n=0

Therefore g is also analytic on /, and hence analytic on €. Since
f =g on Q% by the previous corollary, f is identical to g on Q.
That is, (4) holds. O
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