MATH2230B Complex Variables with Applications

Lecturer: Chia-Yu Hsieh

Department of Mathematics The Chinese University of Hong Kong

March 15, 2021

In the following, we assume that f is analytic on a punctured disc $\{z \in \mathbb{C} : 0 < |z - z_0| < R\}$ for some R > 0. f can be represented as Laurent series

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z-z_0)^n, \quad 0 < |z-z_0| < R.$$
 (1)

where $c_n \in \mathbb{C}$, $n \in \mathbb{Z}$. There are three types of singularities: removable singularities, poles, and essential singularities.

Definition

Let f be analytic on a punctured disc $\{z \in \mathbb{C} : 0 < |z - z_0| < R\}$ for some R > 0 with representation (1).

- (i) If $c_n = 0$ for all n < 0, then z_0 is called a removable singularity.
- (ii) If there is $m \in \mathbb{N}$ such that $c_{-m} \neq 0$ and $c_n = 0$ for all n < -m, then z_0 is called a pole of order m.
- (iii) If there are infinitely many $c_n \neq 0$ with n < 0, then z_0 is called an essential singularity.

Example

ii) Let $f(z) = e^{1/z}$ be defined on $B_1(0) \setminus \{0\}$, then 0 is an essential singularity of f.

If z_0 is a removable singularity of f, by defining

$$g(z) = egin{cases} f(z), & 0 < |z - z_0| < R, \ c_0, & z = z_0, \end{cases}$$

then the function g is analytic on $B_R(z_0)$.

Proof.

Notice that

$$g(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$$

has the radius of convergence not less than R, otherwise f cannot be defined on $B_R(z_0) \setminus \{z_0\}$. Since g is a power series, g is analytic on its disc of convergence, which contains $B_R(z_0)$.

If f is bounded and analytic on $B_R(z_0) \setminus \{z_0\}$. Then z_0 is a removable singularity of f.

Proof.

Notice that f can be represented as its Laurent series with the coefficients

$$c_n = rac{1}{2\pi i} \int_{\gamma_
ho} rac{f(w)}{(w-z_0)^{n+1}} dw, \quad n \in \mathbb{Z},$$

where γ_{ρ} is the circle centered at z_0 with radius ρ and counterclockwise orientation, for any $\rho > 0$. For each n < 0,

$$|c_n| \leq \frac{1}{2\pi} \cdot \frac{\sup|f|}{\rho^{n+1}} \cdot 2\pi\rho = \frac{\sup|f|}{\rho^n}.$$

Since ρ is arbitrary, we conclude that $c_n = 0$ for all n < 0. That is, z_0 is a removable singularity.

If z_0 is a pole of f, then

$$\lim_{z\to z_0}|f(z)|=\infty.$$

Proof.

If z_0 is a pole of order $m, m \in \mathbb{N}$, we have

$$f(z) = \sum_{n=-m}^{\infty} c_n (z-z_0)^n, \quad 0 < |z-z_0| < R,$$

where $c_{-m} \neq 0$. By letting

$$g(z) = (z - z_0)^m f(z) = \sum_{n=0}^{\infty} c_{n-m} (z - z_0)^n,$$

which is analytic on $B_R(z_0) \setminus \{z_0\}$, then z_0 is a removable singularity of g with

$$\lim_{z\to z_0}g(z)=c_{-m}\neq 0.$$

Therefore,

$$|f(z)| = rac{|g(z)|}{|z-z_0|^m} \longrightarrow \infty \quad ext{as } z o z_0.$$

If z_0 is an essential singularity of f, then for any $c \in \mathbb{C}$, there is a sequence $z_k \to z_0$ such that

$$|f(z_k)-c| \longrightarrow 0$$
 as $k \to \infty$.

Proof.

Suppose on the contrary that there are $c \in \mathbb{C}$, $\varepsilon_0 > 0$ and $\delta_0 \in (0, R)$ such that

$$|f(z)-c| > arepsilon_0$$
 for all $z \in B_{\delta_0}(z_0) ar{z_0}.$

We define

$$g(z) = rac{1}{f(z)-c}$$
 on $B_{\delta_0}(z_0) \setminus \{z_0\}.$

Then g is analytic and

Therefore, z_0 is a removable singularity of g. That is,

$$g(z)=\sum_{n=0}^\infty a_n(z-z_0)^n$$
 on $B_{\delta_0}(z_0)ackslash\{z_0\}$

for some $a_n \in \mathbb{C}$, $n \in \mathbb{N} \cup \{0\}$.

Proof, continued.

If $a_0 \neq 0$, we have

$$\lim_{z\to z_0}g(z)=a_0\neq 0,$$

which implies that

$$\lim_{z \to z_0} f(z) = \lim_{z \to z_0} \frac{1}{g(z)} + c = \frac{1}{a_0} + c.$$

Therefore, f is bounded on $B_{\sigma}(z_0) \setminus \{z_0\}$ for some $\sigma > 0$. Thus, again, z_0 is a removable singularity of f, a contradiction. We must have $a_0 = 0$. Let N be the least number (if it exists) such that

$$a_0 = a_1 = \ldots = a_{N-1} = 0$$
 and $a_N \neq 0$.

Define

$$h(z)=\sum_{n=0}^\infty a_{n+N}(z-z_0)^n \quad \text{on } B_{\delta_0}(z_0),$$

which is analytic with $h(z_0) = a_N \neq 0$.

Proof, continued.

Then

$$g(z) = (z - z_0)^N \sum_{n=N}^{\infty} a_n (z - z_0)^{n-N} = (z - z_0)^N h(z)$$

on $B_{\delta_0}(z_0) \setminus \{z_0\}$. Moreover, on $B_{\delta_0}(z_0) \setminus \{z_0\}$,

$$f(z) = rac{1}{g(z)} + c = rac{1}{h(z)(z-z_0)^N} + c,$$

which implies that z_0 is a pole of order N of f, again a contradiction. As a consequence, $a_n = 0$ for all $n \in \mathbb{N} \cup \{0\}$, which implies that

$$g(z) = 0$$
 on $B_{\delta_0}(z_0) \setminus \{z_0\}$.

It is still impossible. We then complete the proof.

Theorem (Picard's theorem)

If z_0 is an essential singularity of f, then on any punctured neighborhood of z_0 , f takes all complex values, with at most one exception, infinitely often.

Example

Let $f(z) = e^{1/z}$. Then 0 is an essential singularity of f. The value 0 is the only exceptional value which cannot be taken by f on any punctured neighborhood of the point 0. For any non-zero complex value $c = \rho e^{i\theta}$, we solve the equation

$$e^{1/z} = e^{\frac{1}{|z|^2}(x-iy)} = \rho e^{i\theta} = c, \quad z = x + yi.$$
 (2)

We have

$$e^{x/|z|^2}=
ho$$
 and $e^{-iy/|z|^2}=e^{i heta}.$

That is,

$$rac{x}{|z|^2} = \ln
ho \quad and \quad rac{y}{|z|^2} = - heta + 2n\pi, \quad n \in \mathbb{Z}.$$

Example (continued)

The last two equations imply

$$\frac{1}{|z|^2} = (\ln \rho)^2 + (-\theta + 2n\pi)^2.$$
 (3)

Thus, we know that for each $n \in \mathbb{Z}$, $z_n = x_n + y_n i$ is a solution of (2), where

$$x_n = rac{\ln
ho}{\left(\ln
ho\right)^2 + \left(- heta + 2n\pi\right)^2} \quad and \quad y_n = rac{- heta + 2n\pi}{\left(\ln
ho\right)^2 + \left(- heta + 2n\pi\right)^2}.$$

By (3), $z_n \rightarrow 0$ as $n \rightarrow \infty$. That is, c can be taken by f infinitely many times on any punctured neighborhood of 0.

Definition

Let f be defined on an open connected set Ω . The image of a set $X \subset \Omega$ under f is defined by

$$f(X) = \{w \in \mathbb{C} : w = f(z) \text{ for some } z \in X\}.$$

The preimage of a set $Y \subset f(\Omega)$ under f is defined by

$$f^{-1}(Y) = \{z \in \mathbb{C} : f(z) = w ext{ for some } w \in Y\}$$
 .

If $Y = \{c\}$, we may write $f^{-1}(Y) = f^{-1}(c)$ for simplicity.

Proposition

If f is non-constant, analytic, and $f(z_0) = c$ for some $z_0 \in \Omega$, then there is $\varepsilon > 0$ such that

$$B_{\varepsilon}(z_0)\cap f^{-1}(c)=\{z_0\}.$$

Proof.

Near z_0 , f has the Taylor series

$$f(z) = f(z_0) + \sum_{n=1}^{\infty} a_n (z - z_0)^n = c + \sum_{n=1}^{\infty} a_n (z - z_0)^n.$$

Since f is non-constant, there is a smallest $N \in \mathbb{N}$ such that $a_N \neq 0$. And we can rewrite above representation as

$$f(z) = c + \sum_{n=N}^{\infty} a_n (z - z_0)^n = c + (z - z_0)^N g(z),$$

where

$$g(z)=\sum_{n=0}^{\infty}a_{N+n}(z-z_0)^n.$$

Since $a_N \neq 0$, there is $\varepsilon > 0$ such that

$$g(z) \neq 0$$
 on $B_{\varepsilon}(z_0)$,

which implies that

$$f(z) \neq c$$
 on $B_{\varepsilon}(z_0) \setminus \{z_0\}$.

Theorem

Suppose that f is analytic on an open connected set Ω . If $f(z_n) = 0$, where $z_n \in \Omega$ is a sequence of distinct points with a limit point in Ω , then f is identical to 0.

Proof.

By taking a subsequence, still indexed by $n, z_0 = \lim_{n \to \infty} z_n$. By the continuity of $f, f(z_0) = 0$. Suppose that f is not identical to 0, by the isolation of points in preimage, there is $\varepsilon > 0$ such that

$$B_{\varepsilon}(z_0) \cap f^{-1}(0) = \{z_0\},\$$

a contradiction.

Corollary

Suppose that f and g are analytic on an open connected set Ω . If $f(z_n) = g(z_n)$, where $z_n \in \Omega$ is a sequence of distinct points with a limit point in Ω , then f is identical to g.

Remark

If f and F are analytic on Ω' and Ω , respectively, where $\Omega' \subset \Omega$. If f(z) = F(z) on Ω' , then F is an analytic continuation of f. This corollary guarantees that there can be only one such analytic continuation. In particular, suppose that f_1 and f_2 are analytic on Ω_1 and Ω_2 , respectively, and $f_1 = f_2$ on $\Omega_1 \cap \Omega_2 \neq \phi$. Then the function

$$g(z) = egin{cases} f_1(z) & ext{ if } z \in \Omega_1 ackslash \Omega_2, \ f_2(z) & ext{ if } z \in \Omega_2, \end{cases}$$

on $\Omega_1 \cup \Omega_2$ is an analytic continuation of both f_1 and f_2 .

Theorem (reflection principle)

Let Ω be an open connected set which is symmetric with respect to the real axis. $\Omega = \Omega^+ \cup I \cup \Omega^-$, where Ω^+ is the upper half part, Ω^- is the lower half part, and $I = \Omega \cap \mathbb{R}$. If f is analytic on Ω , then

$$f(z) = f(\overline{z}), \quad z \in \Omega,$$
 (4)

if and only if f is real-valued on I.

Proof.

Suppose that (4) holds. For $x \in I$, we have

$$\overline{f(x)}=f(\overline{x})=f(x),$$

which gives $f(x) \in \mathbb{R}$. On the other hand, if f is real-valued on I, we can define

$$g(z) = egin{cases} f(z) & ext{ if } z \in \Omega^+ \cup I, \ & \ & \ & \ \hline f(\overline{z}) & ext{ if } z \in \Omega^-. \end{cases}$$

Proof, continued.

Then g is analytic on Ω^+ . For each $z_0 \in \Omega^-$, we have $\overline{z_0} \in \Omega^+$, and hence

$$g(z) = \sum_{n=0}^{\infty} a_n (z - \overline{z_0})^n$$

in a neighborhood of $\overline{z_0}$ in Ω^+ . By the definition of g,

$$g(z) = \sum_{n=0}^{\infty} \overline{a_n} (z - z_0)^n$$

in a neighborhood of z_0 in Ω^- . That is, g is analytic on Ω^- . And for each $x_0 \in I$, we have

$$f(z) = \sum_{n=0}^{\infty} b_n (z - x_0)^n$$

in a neighborhood of x_0 , say $B_{\delta}(x_0)$. In addition, b_n 's are all real since f takes real values on I.

Proof, continued.

Hence,

$$g(z) = \sum_{n=0}^{\infty} b_n (z - x_0)^n$$
 on $B_{\delta}(x_0) \cap (\Omega^+ \cup I)$.

Moreover, for $z \in B_{\delta}(x_0) \cap \Omega^-$,

$$g(z) = \sum_{n=0}^{\infty} \overline{b_n} (z - \overline{x_0})^n = \sum_{n=0}^{\infty} b_n (z - x_0)^n.$$

We conclude that

$$g(z) = \sum_{n=0}^{\infty} b_n (z - x_0)^n$$
 on $B_{\delta}(x_0)$.

Therefore g is also analytic on I, and hence analytic on Ω . Since f = g on Ω^+ , by the previous corollary, f is identical to g on Ω . That is, (4) holds.