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In the following, we assume that f is analytic on a punctured disc
{z ∈ C : 0 < |z − z0| < R} for some R > 0. f can be represented
as Laurent series

f (z) =
∞∑

n=−∞
cn(z − z0)n, 0 < |z − z0| < R. (1)

where cn ∈ C, n ∈ Z. There are three types of singularities:
removable singularities, poles, and essential singularities.



Definition

Let f be analytic on a punctured disc {z ∈ C : 0 < |z − z0| < R}
for some R > 0 with representation (1).

(i) If cn = 0 for all n < 0, then z0 is called a removable
singularity.

(ii) If there is m ∈ N such that c−m 6= 0 and cn = 0 for all
n < −m, then z0 is called a pole of order m.

(iii) If there are infinitely many cn 6= 0 with n < 0, then z0 is
called an essential singularity.

Example

(i) Let f (z) =
1

z(1 + z2)
be defined on B1(0)\{0}, then 0 is a

pole of f .

(ii) Let f (z) = e1/z be defined on B1(0)\{0}, then 0 is an
essential singularity of f .



Proposition

If z0 is a removable singularity of f , by defining

g(z) =

{
f (z), 0 < |z − z0| < R,

c0, z = z0,

then the function g is analytic on BR(z0).

Proof.

Notice that

g(z) =
∞∑
n=0

cn(z − z0)n

has the radius of convergence not less than R, otherwise f cannot
be defined on BR(z0)\{z0}. Since g is a power series, g is analytic
on its disc of convergence, which contains BR(z0).



Proposition

If f is bounded and analytic on BR(z0)\{z0}. Then z0 is a
removable singularity of f .

Proof.

Notice that f can be represented as its Laurent series with the
coefficients

cn =
1

2πi

ˆ
γρ

f (w)

(w − z0)n+1
dw , n ∈ Z,

where γρ is the circle centered at z0 with radius ρ and
counterclockwise orientation, for any ρ > 0. For each n < 0,

|cn| ≤
1

2π
· sup |f |
ρn+1

· 2πρ =
sup |f |
ρn

.

Since ρ is arbitrary, we conclude that cn = 0 for all n < 0. That is,
z0 is a removable singularity.



Proposition

If z0 is a pole of f , then

lim
z→z0

|f (z)| =∞.



Proof.

If z0 is a pole of order m, m ∈ N, we have

f (z) =
∞∑

n=−m
cn(z − z0)n, 0 < |z − z0| < R,

where c−m 6= 0. By letting

g(z) = (z − z0)mf (z) =
∞∑
n=0

cn−m(z − z0)n,

which is analytic on BR(z0)\{z0}, then z0 is a removable singularity of g
with

lim
z→z0

g(z) = c−m 6= 0.

Therefore,

|f (z)| =
|g(z)|
|z − z0|m

−→∞ as z → z0.



Proposition

If z0 is an essential singularity of f , then for any c ∈ C, there is a
sequence zk → z0 such that

|f (zk)− c | −→ 0 as k →∞.



Proof.

Suppose on the contrary that there are c ∈ C, ε0 > 0 and δ0 ∈ (0,R) such
that

|f (z)− c | > ε0 for all z ∈ Bδ0(z0)\{z0}.

We define

g(z) =
1

f (z)− c
on Bδ0(z0)\{z0}.

Then g is analytic and

|g(z)| ≤ 1

|f (z)− c|
≤ 1

ε0
on Bδ0(z0)\{z0}.

Therefore, z0 is a removable singularity of g . That is,

g(z) =
∞∑
n=0

an(z − z0)n on Bδ0(z0)\{z0}

for some an ∈ C, n ∈ N ∪ {0}.



Proof, continued.

If a0 6= 0, we have

lim
z→z0

g(z) = a0 6= 0,

which implies that

lim
z→z0

f (z) = lim
z→z0

1

g(z)
+ c =

1

a0
+ c .

Therefore, f is bounded on Bσ(z0)\{z0} for some σ > 0. Thus, again, z0
is a removable singularity of f , a contradiction. We must have a0 = 0. Let
N be the least number (if it exists) such that

a0 = a1 = ... = aN−1 = 0 and aN 6= 0.

Define

h(z) =
∞∑
n=0

an+N(z − z0)n on Bδ0(z0),

which is analytic with h(z0) = aN 6= 0.



Proof, continued.

Then

g(z) = (z − z0)N
∞∑

n=N

an(z − z0)n−N = (z − z0)Nh(z)

on Bδ0(z0)\{z0}. Moreover, on Bδ0(z0)\{z0},

f (z) =
1

g(z)
+ c =

1

h(z)(z − z0)N
+ c ,

which implies that z0 is a pole of order N of f , again a
contradiction. As a consequence, an = 0 for all n ∈ N ∪ {0}, which
implies that

g(z) = 0 on Bδ0(z0)\{z0}.

It is still impossible. We then complete the proof.



Theorem (Picard’s theorem)

If z0 is an essential singularity of f , then on any punctured
neighborhood of z0, f takes all complex values, with at most one
exception, infinitely often.



Example

Let f (z) = e1/z . Then 0 is an essential singularity of f . The value
0 is the only exceptional value which cannot be taken by f on any
punctured neighborhood of the point 0. For any non-zero complex
value c = ρe iθ, we solve the equation

e1/z = e
1

|z|2
(x−iy)

= ρe iθ = c , z = x + yi . (2)

We have

ex/|z|
2

= ρ and e−iy/|z|
2

= e iθ.

That is,

x

|z |2
= ln ρ and

y

|z |2
= −θ + 2nπ, n ∈ Z.



Example (continued)

The last two equations imply

1

|z |2
= (ln ρ)2 + (−θ + 2nπ)2 . (3)

Thus, we know that for each n ∈ Z, zn = xn + yni is a solution of
(2), where

xn =
ln ρ

(ln ρ)2 + (−θ + 2nπ)2
and yn =

−θ + 2nπ

(ln ρ)2 + (−θ + 2nπ)2
.

By (3), zn → 0 as n→∞. That is, c can be taken by f infinitely
many times on any punctured neighborhood of 0.



Definition

Let f be defined on an open connected set Ω. The image of a set
X ⊂ Ω under f is defined by

f (X ) = {w ∈ C : w = f (z) for some z ∈ X} .

The preimage of a set Y ⊂ f (Ω) under f is defined by

f −1(Y ) = {z ∈ C : f (z) = w for some w ∈ Y } .

If Y = {c}, we may write f −1(Y ) = f −1(c) for simplicity.

Proposition

If f is non-constant, analytic, and f (z0) = c for some z0 ∈ Ω, then
there is ε > 0 such that

Bε(z0) ∩ f −1(c) = {z0}.



Proof.

Near z0, f has the Taylor series

f (z) = f (z0) +
∞∑
n=1

an(z − z0)n = c +
∞∑
n=1

an(z − z0)n.

Since f is non-constant, there is a smallest N ∈ N such that aN 6= 0. And we can
rewrite above representation as

f (z) = c +
∞∑

n=N

an(z − z0)n = c + (z − z0)Ng(z),

where

g(z) =
∞∑
n=0

aN+n(z − z0)n.

Since aN 6= 0, there is ε > 0 such that

g(z) 6= 0 on Bε(z0),

which implies that

f (z) 6= c on Bε(z0)\{z0}.



Theorem

Suppose that f is analytic on an open connected set Ω. If
f (zn) = 0, where zn ∈ Ω is a sequence of distinct points with a
limit point in Ω, then f is identical to 0.

Proof.

By taking a subsequence, still indexed by n, z0 = limn→∞ zn. By
the continuity of f , f (z0) = 0. Suppose that f is not identical to 0,
by the isolation of points in preimage, there is ε > 0 such that

Bε(z0) ∩ f −1(0) = {z0},

a contradiction.



Corollary

Suppose that f and g are analytic on an open connected set Ω. If
f (zn) = g(zn), where zn ∈ Ω is a sequence of distinct points with a
limit point in Ω, then f is identical to g .

Remark

If f and F are analytic on Ω′ and Ω, respectively, where Ω′ ⊂ Ω. If
f (z) = F (z) on Ω′, then F is an analytic continuation of f . This
corollary guarantees that there can be only one such analytic
continuation. In particular, suppose that f1 and f2 are analytic on
Ω1 and Ω2, respectively, and f1 = f2 on Ω1 ∩ Ω2 6= φ. Then the
function

g(z) =

{
f1(z) if z ∈ Ω1\Ω2,

f2(z) if z ∈ Ω2,

on Ω1 ∪ Ω2 is an analytic continuation of both f1 and f2.



Theorem (reflection principle)

Let Ω be an open connected set which is symmetric with respect to the
real axis. Ω = Ω+ ∪ I ∪ Ω−, where Ω+ is the upper half part, Ω− is the
lower half part, and I = Ω ∩ R. If f is analytic on Ω, then

f (z) = f (z), z ∈ Ω, (4)

if and only if f is real-valued on I .

Proof.

Suppose that (4) holds. For x ∈ I , we have

f (x) = f (x) = f (x),

which gives f (x) ∈ R. On the other hand, if f is real-valued on I , we can
define

g(z) =


f (z) if z ∈ Ω+ ∪ I ,

f (z) if z ∈ Ω−.



Proof, continued.

Then g is analytic on Ω+. For each z0 ∈ Ω−, we have z0 ∈ Ω+, and hence

g(z) =
∞∑
n=0

an(z − z0)n

in a neighborhood of z0 in Ω+. By the definition of g ,

g(z) =
∞∑
n=0

an(z − z0)n

in a neighborhood of z0 in Ω−. That is, g is analytic on Ω−. And for each
x0 ∈ I , we have

f (z) =
∞∑
n=0

bn(z − x0)n

in a neighborhood of x0, say Bδ(x0). In addition, bn’s are all real since f
takes real values on I .



Proof, continued.

Hence,

g(z) =
∞∑
n=0

bn(z − x0)n on Bδ(x0) ∩
(
Ω+ ∪ I

)
.

Moreover, for z ∈ Bδ(x0) ∩ Ω−,

g(z) =
∞∑
n=0

bn(z − x0)n =
∞∑
n=0

bn(z − x0)n.

We conclude that

g(z) =
∞∑
n=0

bn(z − x0)n on Bδ(x0).

Therefore g is also analytic on I , and hence analytic on Ω. Since
f = g on Ω+, by the previous corollary, f is identical to g on Ω.
That is, (4) holds.


