MATH2230B Complex Variables with Applications

Lecturer: Chia-Yu Hsieh

Department of Mathematics The Chinese University of Hong Kong

March 10, 2021

Theorem

Suppose that f is analytic on an annulus $B_{R_2}(z_0) \setminus B_{R_1}(z_0)$. Then f can be represented as

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z-z_0)^n, \quad z \in B_{R_2}(z_0) \setminus \overline{B_{R_1}(z_0)},$$
(1)

where

$$c_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w - z_0)^{n+1}} dw$$

with any simple closed curve γ in $B_{R_2}(z_0) \setminus \overline{B_{R_1}(z_0)}$ around z_0 with counterclockwise orientation.

Remark

- (i) The expression (1) is called the Laurent series of f about z_0 .
- (ii) If f is also analytic on $\overline{B_{R_1}(z_0)}$, then the Taylor series of f and the Laurent series of f about z_0 agree with each other. In fact, $c_n = 0$ for all n < 0 by Cauchy-Goursat theorem. Moreover, by Cauchy integral formula, $c_n = f^{(n)}(z_0)/n! = a_n$ for $n \in \mathbb{N} \cup \{0\}$, where a_n are the coefficients of Taylor series of f.
- (iii) The coefficients of Laurent series are unique. Suppose that

$$\sum_{n=-\infty}^{\infty} c_n (z-z_0)^n = \sum_{n=-\infty}^{\infty} \tilde{c}_n (z-z_0)^n \quad \text{on } B_{R_2}(z_0) \setminus \overline{B_{R_1}(z_0)}.$$

Then, for $m \in \mathbb{Z}$,

$$\sum_{n=-\infty}^{\infty} c_n (z-z_0)^{n-m-1} = \sum_{n=-\infty}^{\infty} \tilde{c}_n (z-z_0)^{n-m-1}.$$

Remark (continued)

Since

$$\int_{\gamma} (z-z_0)^{n-m-1} = \begin{cases} 2\pi i & \text{if } n=m, \\ 0 & \text{if } n\neq m, \end{cases}$$

for any simple closed curve $\gamma \in B_{R_2}(z_0) \setminus \overline{B_{R_1}(z_0)}$ around z_0 with counterclockwise orientation, then we conclude

$$c_m = \tilde{c}_m, \quad m \in \mathbb{Z}.$$

Here the interchange of orders of summation and integration can be justified by uniform convergence.

Proof.

Without loss of generality, we may assume that $z_0 = 0$. For $z \in B_{R_2}(0) \setminus \overline{B_{R_1}(0)}$, let γ_1 and γ_2 be the circles centered at 0 with radius r_1 and r_2 , respectively, such that $R_1 < r_1 < |z| < r_2 < R_2$. There is $\varepsilon > 0$ sufficiently small such that the closed disk $\overline{B_{\varepsilon}(z)}$ is contained in the annulus $B_{r_2}(0) \setminus \overline{B_{r_1}(0)}$. Let γ be the boundary of $B_{\varepsilon}(z)$. We assume that γ , γ_1 and γ_2 are all counterclockwise oriented. By Cauchy-Goursat theorem for multi-connected domains,

$$\int_{\gamma_2} \frac{f(w)}{w-z} dw - \int_{\gamma_1} \frac{f(w)}{w-z} dw - \int_{\gamma} \frac{f(w)}{w-z} dw = 0.$$
 (2)

By the Cauchy integral formula,

$$\int_{\gamma} \frac{f(w)}{w-z} dw = 2\pi i f(z).$$

Proof, continued.

Put this into (2), we obtain

$$f(z) = \frac{1}{2\pi i} \int_{\gamma_2} \frac{f(w)}{w - z} dw + \frac{1}{2\pi i} \int_{\gamma_1} \frac{f(w)}{z - w} dw.$$
 (3)

Notice that

$$\frac{1}{w-z} = \frac{1}{w} \cdot \frac{1}{1-z/w} = \frac{1}{w} \left[\sum_{n=0}^{N} \left(\frac{z}{w} \right)^n + \frac{1}{1-z/w} \left(\frac{z}{w} \right)^{N+1} \right]$$

for $w \in \gamma_2$. Similarly,

$$\frac{1}{z-w} = \frac{1}{z} \left[\sum_{n=0}^{M} \left(\frac{w}{z} \right)^n + \frac{1}{1-w/z} \left(\frac{w}{z} \right)^{M+1} \right]$$

for $w \in \gamma_1$. Then (3) becomes

$$f(z) = \sum_{n=0}^{N} \frac{z^{n}}{2\pi i} \int_{\gamma_{2}} \frac{f(w)}{w^{n+1}} dw + \frac{z^{N+1}}{2\pi i} \int_{\gamma_{2}} \frac{f(w)}{(w-z)w^{N+1}} dw + \sum_{n=0}^{M} \frac{z^{-(n+1)}}{2\pi i} \int_{\gamma_{1}} \frac{f(w)}{w^{-n}} dw + \frac{z^{-(M+1)}}{2\pi i} \int_{\gamma_{1}} \frac{f(w)}{(z-w)w^{-(M+1)}} dw.$$

Proof, continued.

Now, let $K = \max_{\gamma_1 \cup \gamma_2} |f|$. Then

$$\begin{aligned} &\left|\frac{z^{N+1}}{2\pi i}\int_{\gamma_2}\frac{f(w)}{(w-z)w^{N+1}}dw\right|\\ &\leq \frac{|z|^{N+1}}{2\pi}\cdot\frac{K}{(r_2-|z|)r_2^{N+1}}\cdot 2\pi r_2\\ &= K\cdot\frac{r_2}{r_2-|z|}\left(\frac{|z|}{r_2}\right)^{N+1}\longrightarrow 0 \quad \text{as } N\to\infty, \end{aligned}$$

and

$$\left| \frac{z^{-(M+1)}}{2\pi i} \int_{\gamma_1} \frac{f(w)}{(z-w)w^{-(M+1)}} dw \right|$$

$$\leq \frac{|z|^{-(M+1)}}{2\pi} \cdot \frac{K}{(|z|-r_1)r_1^{-(M+1)}} \cdot 2\pi r_1$$

$$= K \cdot \frac{r_1}{|z|-r_1} \left(\frac{r_1}{|z|}\right)^{M+1} \longrightarrow 0 \quad \text{as } M \to \infty$$

Therefore, we complete the proof.

Example

Let
$$f(z) = rac{1}{z(1+z^2)}$$
. Since $rac{1}{1+z^2} = \sum_{n=0}^\infty (-1)^n z^{2n}, \quad |z|<1$

Therefore,

$$\frac{1}{z(1+z^2)} = \sum_{n=0}^{\infty} (-1)^n z^{2n-1}, \quad 0 < |z| < 1,$$

is the Laurent series of f.

Example

Let
$$f(z) = \frac{z+1}{z-1}$$
. For $|z| < 1$,
 $\frac{z+1}{z-1} = -z \cdot \frac{1}{1-z} - \frac{1}{1-z} = -z \sum_{n=0}^{\infty} z^n - \sum_{n=0}^{\infty} z^n$
 $= -1 - 2 \sum_{n=1}^{\infty} z^n$,

which is the Taylor series of f. And for |z| > 1,

$$\frac{z+1}{z-1} = \frac{1+\frac{1}{z}}{1-\frac{1}{z}} = \left(1+\frac{1}{z}\right)\sum_{n=0}^{\infty}\frac{1}{z^n} = 1+2\sum_{n=1}^{\infty}\frac{1}{z^n},$$

which is the Laurent series of f.

Example

Notice that

$$e^{1/z} = \sum_{n=0}^{\infty} \frac{z^{-n}}{n!},$$

which is the Laurent series of $e^{1/z}$. Let γ be the circle centered at 0 with radius R, counterclockwise oriented. Then the coefficients of Laurent series

$$c_{-n} = \frac{1}{2\pi i} \int_{\gamma} \frac{e^{1/z}}{z^{-n+1}} dz = \frac{1}{n!}, \quad n \in \mathbb{N} \cup \{0\}.$$

It can be used to evaluate the integrals

$$\int_{\gamma} \frac{e^{1/z}}{z^{-n+1}} dz = \frac{2\pi i}{n!}, \quad n \in \mathbb{N} \cup \{0\}.$$