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Definition

For zn ∈ C, n ∈ N ∪ {0}, the series
∞∑
n=0

zn converges to the sum z

if the partial sum

N∑
n=0

zn −→ z as N →∞.

If it does not converge, we say that it diverges. And we say that

the series
∞∑
n=0

zn converges absolutely if the series
∞∑
n=0

|zn|

converges.

Proposition

Absolute convergence implies convergence.



Proposition

Given a power series
∞∑
n=0

anz
n, there exists 0 ≤ R ≤ ∞ such that

the series converges absolutely if |z | < R and diverges if |z | > R.
Moreover, R is given by

R =

(
lim sup
n→∞

|an|1/n
)−1

.

Definition

R given in the last proposition is called the radius of convergence
of the power series. And BR(0) is called the disc of convergence.



Proof.

For |z | < R, there is ε1 > 0 small enough such that(
R−1 + ε1

)
|z | = r < 1.

By the definition of R,

|an|1/n ≤ R−1 + ε1

for all n large, which gives

|an||z |n ≤
(
R−1 + ε1

)n |z |n = rn.

By a comparison with the series
∞∑
n=0

rn, the series
∞∑
n=0

anz
n

converges absolutely.



Proof, continued.

If |z | > R, there is ε2 > 0 such that(
R−1 − ε2

)
|z | > 1.

By the definition of R, there exist a subsequence, still denoted by
an, such that

|an|1/n ≥ R−1 − ε2.

We have

|anzn| ≥
(
R−1 − ε2

)n |z |n −→∞ as n→∞.

Thus, the series cannot converge for |z | > R.



Theorem

A function defined by a power series

f (z) =
∞∑
n=0

anz
n, an ∈ C,

with positive radius of convergence, is differentiable on its disc of
convergence. And its derivative can be represented by the power
series

f ′(z) =
∞∑
n=1

nanz
n−1,

which has the same radius of convergence as f .



Proof.

Let

g(z) =
∞∑
n=1

nanz
n−1.

Since

lim sup
n→∞

|an|1/n = lim sup
n→∞

|nan|1/n,

g has the same radius of convergence as f . Let R be the radius of
convergence of f , and divide f into

f (z) = SN(z) + RN(z),

where

SN(z) =
N∑

n=0

anz
n and RN(z) =

∞∑
n=N+1

anz
n.



Proof, continued.

For |z0| < r < R, |h| sufficiently small such that |z0 + h| < r , we
have

f (z0 + h)− f (z0)

h
− g(z0)

=

(
SN(z0 + h)− SN(z0)

h
− S ′N(z0)

)
+
(
S ′N(z0)− g(z0)

)
+

RN(z0 + h)− RN(z0)

h

Given ε > 0, since∣∣∣∣RN(z0 + h)− RN(z0)

h

∣∣∣∣ ≤ ∞∑
n=N+1

|an|
∣∣∣∣(z0 + h)n − zn0

h

∣∣∣∣
≤

∞∑
n=N+1

|an|nrn−1,



Proof, continued.

there is N1 ∈ N sufficiently large such that∣∣∣∣RN(z0 + h)− RN(z0)

h

∣∣∣∣ < ε

3

for all h with |z0 + h| < r and N ≥ N1. Also, since

lim
N→∞

S ′N(z0) = g(z0),

there is N2 ∈ N sufficiently large such that∣∣S ′N(z0)− g(z0)
∣∣ < ε

3

if N ≥ N2.



Proof, continued.

Now, we fix N ≥ max{N1,N2}, there is δ > 0 such that∣∣∣∣SN(z0 + h)− SN(z0)

h
− S ′N(z0)

∣∣∣∣ < ε

3

provided |h| < δ. Therefore,∣∣∣∣ f (z0 + h)− f (z0)

h
− g(z0)

∣∣∣∣ < ε

provided |h| < δ, that is,

f ′(z0) = g(z0).



Corollary

A function defined by a power series with positive radius of
convergence is infinitely many times differentiable on its disc of
convergence. And all the higher derivatives can be represented by
the power series obtained by termwise differentiation and have the
same radius of convergence as f .



Theorem

Suppose that f is analytic on a disc BR(z0). Then f can be
represented as

f (z) =
∞∑
n=0

an(z − z0)n, z ∈ BR(z0), (1)

where

an =
f (n)(z0)

n!
, n ∈ N ∪ {0}.

Remark

(i) The expression (1) is called the Taylor series of f about z0. In
particular, if z0 = 0, it is called the Maclaurin series of f .

(ii) The coefficients of Taylor series are unique.



Proof.

Without loss of generality, we may assume that z0 = 0. By Cauchy
integral formula, for any z ∈ BR(0),

f (z) =
1

2πi

ˆ
γ

f (w)

w − z
dw , (2)

where γ is the circle centered at 0 with radius
|z |+ R

2
and

counterclockwise orientation. Notice that

1

w − z
=

1

w
· 1

1− z/w
=

1

w

[
N∑

n=0

( z

w

)n
+

1

1− z/w

( z

w

)N+1
]
.

Thus, (2) becomes



Proof, continued.

f (z) =
1

2πi

ˆ
γ

f (w)

w

N∑
n=0

( z

w

)n
dw

+
1

2πi

ˆ
γ

f (w)

w

1

1− z/w

( z

w

)N+1
dw

=
N∑

n=0

zn

2πi

ˆ
γ

f (w)

wn+1
dw +

zN+1

2πi

ˆ
γ

f (w)

(w − z)wN+1
dw . (3)

By the generalized Cauchy integral formula,

1

2πi

ˆ
γ

f (w)

wn+1
dw =

f (n)(0)

n!
, n = 0, 1, ...,N.



Proof, continued.

Thus, (3) reduces to

f (z) =
N∑

n=0

f (n)(0)

n!
zn +

zN+1

2πi

ˆ
γ

f (w)

(w − z)wN+1
dw .

Now, let M = maxγ |f |, then∣∣∣∣zN+1

2πi

ˆ
γ

f (w)

(w − z)wN+1
dw

∣∣∣∣
≤ |z |

N+1

2π
· M

R − |z |
2

(
R + |z |

2

)N+1
· 2π

(
R + |z |

2

)

= M · R + |z |
R − |z |

(
2|z |

R + |z |

)N+1

−→ 0 as N →∞.

Therefore, we complete the proof.



Example

Let f (z) =
1

1− z
. We have

f (n)(z) =
n!

(1− z)n+1
, z 6= 1, n ∈ N ∪ {0}.

Thus,

1

1− z
=
∞∑
n=0

zn on B1(0).

As for the Taylor series of f about i , we have

1

1− z
=
∞∑
n=0

(z − i)n

(1− i)n+1
on B√2(i).



Example

Let f (z) = ez . We have

f (n)(z) = ez on C, n ∈ N ∪ {0}.

Thus,

ez =
∞∑
n=0

zn

n!
on C.

We can use the Taylor series of ez to show that

e2z =
∞∑
n=0

2nzn

n!
on C.

Moreover,

z3e2z =
∞∑
n=0

2nzn+3

n!
on C.



Example

Let f (z) = sin z =
e iz − e−iz

2i
. We have

f (n)(z) =
ine iz − (−i)ne−iz

2i
on C, n ∈ N ∪ {0}.

Thus,

sin z =
∞∑
n=0

in − (−i)n

2i
· z

n

n!
=
∞∑
k=0

i2k

(2k + 1)!
z2k+1

=
∞∑
k=0

(−1)k

(2k + 1)!
z2k+1 on C. (4)



Example

Let f (z) = cos z =
e iz + e−iz

2
. We have

f (n)(z) =
ine iz + (−i)ne−iz

2
on C, n ∈ N ∪ {0}.

Thus,

cos z =
∞∑
n=0

in + (−i)n

2
· z

n

n!
=
∞∑
k=0

i2k

(2k)!
z2k

=
∞∑
k=0

(−1)k

(2k)!
z2k on C.

The Taylor series of cos z can also be obtained by differentiating (4) term
by term

cos z =
∞∑
k=0

(−1)k

(2k + 1)!
· (2k + 1)z2k =

∞∑
k=0

(−1)k

(2k)!
z2k on C.



Example

Let f (z) = sinh z =
ez − e−z

2
. We have

f (n)(z) =
ez − (−1)ne−z

2
on C, n ∈ N ∪ {0}.

Thus,

sinh z =
∞∑
n=0

1− (−1)n

2
· z

n

n!
=
∞∑
k=0

z2k+1

(2k + 1)!
on C.



Example

Let f (z) = cosh z =
ez + e−z

2
. We have

f (n)(z) =
ez + (−1)ne−z

2
on C, n ∈ N ∪ {0}.

Thus,

cosh z =
∞∑
n=0

1 + (−1)n

2
· z

n

n!
=
∞∑
k=0

z2k

(2k)!
on C.



Theorem

Suppose that f is analytic on an annulus BR2(z0)\BR1(z0). Then f
can be represented as

f (z) =
∞∑

n=−∞
cn(z − z0)n, z ∈ BR2(z0)\BR1(z0), (5)

where

cn =
1

2πi

ˆ
γ

f (w)

(w − z0)n+1
dw

with any simple closed curve γ in BR2(z0)\BR1(z0) around z0 with
counterclockwise orientation.


