MATH2230B Complex Variables with Applications

Lecturer: Chia-Yu Hsieh

Department of Mathematics The Chinese University of Hong Kong

March 1, 2021

Theorem (Liouville's theorem)

If f is entire and bounded, then f is constant.

Proof.

Since f is bounded, there is a positive constant M such that

 $|f(z)| \leq M$

for all $z \in \mathbb{C}$. By Cauchy's inequality,

$$|f'(z)| \leq rac{M}{R}$$

for any $z \in \mathbb{C}$ and R > 0. Since R is arbitrary, we obtain that

$$f'(z) = 0$$
 on \mathbb{C} .

As a consequence, f is a constant on \mathbb{C} .

Theorem (Fundamental theorem of algebra)

Any non-constant polynomial has at least one root.

Proof.

Suppose on the contrary that there is a polynomial

$$P(z) = a_0 + a_1 z + \ldots + a_n z^n, \quad n \ge 1, \quad a_n \ne 0,$$

such that $P(z) \neq 0$ for all $z \in \mathbb{C}$. Then 1/P(z) is entire. Now, we claim that 1/P(z) is bounded. Let

$$w(z) = \frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \ldots + \frac{a_{n-1}}{z}, \quad z \neq 0.$$

By the triangle inequality,

$$|w(z)| \leq \frac{|a_0|}{|z|^n} + \frac{|a_1|}{|z|^{n-1}} + ... + \frac{|a_{n-1}|}{|z|}.$$

Proof, continued.

By choosing R > 0 sufficiently large, we have

$$rac{|a_k|}{R^{n-k}} \le rac{|a_n|}{2n}$$
 for $k = 0, 1, ..., n-1$,

which gives

$$|w| \leq \frac{|a_n|}{2}$$
 for all $|z| \geq R$.

Consequently,

$$|a_n+w|\geq |a_n|-|w|\geq rac{|a_n|}{2}$$
 for all $|z|\geq R.$

Proof, continued.

Then we have

$$|P(z)| = |a_n + w||z|^n \ge \frac{|a_n|}{2}R^n$$
 for all $|z| \ge R$,

and hence

$$\left|rac{1}{P(z)}
ight|\leqrac{2}{|a_n|R^n}\qquad ext{for all }|z|\geq R.$$

Since 1/P(z) is continuous on the set $\{|z| \le R\}$, it is bounded on $\{|z| \le R\}$. Therefore, 1/P(z) is entire and bounded. By Liouville's theorem, 1/P(z) is a constant on \mathbb{C} , which leads a contradiction.

Corollary

A polynomial P of order n, $n\geq 1$ has precisely n roots in $\mathbb{C}.$ P can be expressed as

$$P(z) = c(z - z_1)(z - z_2)...(z - z_n),$$

where c, z_1 , ..., z_n are constants with $c \neq 0$.

Proof. For

$$P(z) = a_0 + a_1 z + \ldots + a_n z^n,$$

by the fundamental theorem of algebra, there is a root z_1 of P. We have

$$P(z) = P((z - z_1) + z_1)$$

= $a_0 + a_1((z - z_1) + z_1) + ... + a_n((z - z_1) + z_1)^n$
= $b_1(z - z_1) + b_2(z - z_1)^2 + ... + b_n(z - z_1)^n$

for some $b_1,...,b_n\in\mathbb{C}$, and $b_n=a_n$. Thus,

$$egin{aligned} P(z) &= (z-z_1) \left[b_1 + b_2 (z-z_1) + ... + b_n (z-z_1)^{n-1}
ight] \ &= (z-z_1) Q(z), \end{aligned}$$

where Q is a polynomial of order n - 1. By the fundamental theorem of algebra again, there is a root z_2 of Q. We then prove the corollary inductively.

Theorem (Maximum modulus principle)

If f is non-constant and analytic on an open connected set Ω , then there is no point $z_0 \in \Omega$ such that $|f(z)| \leq |f(z_0)|$ for all $z \in \Omega$.

Lemma

If $|f(z)| \leq |f(z_0)|$ for all $z \in B_R(z_0)$, then $f(z) = f(z_0)$ for all $z \in B_R(z_0)$.

Proof of the lemma.

Let C_{ρ} be the circle centered at z_0 with radius $\rho \in (0, R)$ and counterclockwise oriented. By Cauchy integral formula,

$$f(z_0) = \frac{1}{2\pi i} \int_{C_\rho} \frac{f(z)}{z - z_0} dz$$

for all $\rho \in (0, R)$. Then

$$|f(z_0)| \leq rac{1}{2\pi} \max_{C_{
ho}} rac{|f(z)|}{|z-z_0|} \cdot 2\pi
ho \leq rac{1}{2\pi} \cdot rac{|f(z_0)|}{
ho} \cdot 2\pi
ho = |f(z_0)|$$

for all $\rho \in (0, R)$. Thus both the inequalities above are equalities, which implies that

$$|f(z)| = |f(z_0)| \quad \text{on } C_{\rho}.$$

Since $\rho \in (0, R)$ is arbitrary, $|f(z)| = |f(z_0)|$ on $B_R(z_0)$. Since |f| is a constant on $B_R(z_0)$, f is also a constant on $B_R(z_0)$, which completes the proof.

Proof of maximum modulus principle.

Suppose on the contrary that there is $z_0 \in \Omega$ such that $|f(z)| \leq |f(z_0)|$ for all $z \in \Omega$. For any $w \in \Omega$, there is a polygonal line *L* connecting z_0 and *w*. Let $0 < \delta < \operatorname{dist}(L, \partial\Omega)$, *L* can be covered by finitely many discs $B_{\delta}(z_k)$, $z_k \in L$, k = 0, 1, ..., N, and $w = z_N$. Moreover, $z_k \in B_{\delta}(z_{k-1})$ for each k = 1, 2, ..., N. By the lemma, *f* is a constant on $B_{\delta}(z_0)$. Thus $f(z_1) = f(z_0)$, and hence $|f(z)| \leq |f(z_1)|$ on $B_{\delta}(z_1)$. Continue in this manner, we conclude that $f(w) = f(z_0)$. That is, *f* is constant on Ω , which leads a contradiction.

Remark

- (i) Under the assumptions of the maximum modulus principle, if f is continuous on the closure of Ω, then the maximum value of |f(z)| on the closure of Ω must occur on the boundary of Ω.
- (ii) Applying the maximum modulus principle to 1/f(z), the minimum of |f(z)| cannot be obtained at an interior point of Ω provided that $f(z) \neq 0$ for all $z \in \Omega$.
- (iii) Applying the maximum modulus principle to functions $e^{f(z)}$ and $e^{-if(z)}$, the maximum principle holds for the real and imaginary parts of f.

Example

We can use the maximum modulus principle to prove the fundamental theorem of algebra. Suppose that P is a non-constant polynomial of order n and has no root on \mathbb{C} . Then 1/P(z) is analytic on $B_R(0)$ for all R > 0. As in the proof of the fundamental theorem of algebra, we have

$$\left|\frac{1}{P(z)}\right| \leq \frac{2}{|a_n|R^n}$$
 on the circle $\{z : |z| = R\}$

provided R sufficiently large. By the maximum modulus principle,

$$\left|\frac{1}{P(z)}\right| \leq \frac{2}{|a_n|R^n} \quad on \ B_R(0).$$

Taking $R \to \infty$, we conclude that $\frac{1}{P(z)} = 0$ on \mathbb{C} , which is a contradiction.

Example

Let $f(z) = (z + 1)^2$ be defined on the closed triangle T with vertices z = 0, z = 2 and z = i. Notice that |f(z)| can be interpreted as the square of the distance between -1 and $z \in T$. The maximum and minimum values of |f(z)| occur at z = 2 and z = 0, respectively.

Definition

For $z_n \in \mathbb{C}$, $n \in \mathbb{N} \cup \{0\}$, the series $\sum_{n=0}^{\infty} z_n$ converges to the sum z if the partial sum

$$\sum_{n=0}^N z_n \longrightarrow z$$
 as $N \to \infty$.

If it does not converge, we say that it diverges. And we say that the series $\sum_{n=0}^{\infty} z_n$ converges absolutely if the series $\sum_{n=0}^{\infty} |z_n|$ converges.

Proposition

Absolute convergence implies convergence.