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Theorem (Liouville’s theorem)

If f is entire and bounded, then f is constant.

Proof.

Since f is bounded, there is a positive constant M such that

|f (z)| ≤ M

for all z ∈ C. By Cauchy’s inequality,

|f ′(z)| ≤ M

R

for any z ∈ C and R > 0. Since R is arbitrary, we obtain that

f ′(z) = 0 on C.

As a consequence, f is a constant on C.



Theorem (Fundamental theorem of algebra)

Any non-constant polynomial has at least one root.

Proof.

Suppose on the contrary that there is a polynomial

P(z) = a0 + a1z + ...+ anz
n, n ≥ 1, an 6= 0,

such that P(z) 6= 0 for all z ∈ C. Then 1/P(z) is entire. Now, we
claim that 1/P(z) is bounded. Let

w(z) =
a0
zn

+
a1

zn−1
+ ...+

an−1
z

, z 6= 0.

By the triangle inequality,

|w(z)| ≤ |a0|
|z |n

+
|a1|
|z |n−1

+ ...+
|an−1|
|z |

.



Proof, continued.

By choosing R > 0 sufficiently large, we have

|ak |
Rn−k ≤

|an|
2n

for k = 0, 1, ..., n − 1,

which gives

|w | ≤ |an|
2

for all |z | ≥ R.

Consequently,

|an + w | ≥ |an| − |w | ≥
|an|

2
for all |z | ≥ R.



Proof, continued.

Then we have

|P(z)| = |an + w ||z |n ≥ |an|
2

Rn for all |z | ≥ R,

and hence ∣∣∣∣ 1

P(z)

∣∣∣∣ ≤ 2

|an|Rn
for all |z | ≥ R.

Since 1/P(z) is continuous on the set {|z | ≤ R}, it is bounded on
{|z | ≤ R}. Therefore, 1/P(z) is entire and bounded. By Liouville’s
theorem, 1/P(z) is a constant on C, which leads a
contradiction.



Corollary

A polynomial P of order n, n ≥ 1 has precisely n roots in C. P can
be expressed as

P(z) = c(z − z1)(z − z2)...(z − zn),

where c, z1, ..., zn are constants with c 6= 0.



Proof.

For

P(z) = a0 + a1z + ...+ anz
n,

by the fundamental theorem of algebra, there is a root z1 of P. We have

P(z) = P((z − z1) + z1)

= a0 + a1((z − z1) + z1) + ...+ an((z − z1) + z1)n

= b1(z − z1) + b2(z − z1)2 + ...+ bn(z − z1)n

for some b1, ..., bn ∈ C, and bn = an. Thus,

P(z) = (z − z1)
[
b1 + b2(z − z1) + ...+ bn(z − z1)n−1

]
= (z − z1)Q(z),

where Q is a polynomial of order n − 1. By the fundamental theorem of
algebra again, there is a root z2 of Q. We then prove the corollary
inductively.



Theorem (Maximum modulus principle)

If f is non-constant and analytic on an open connected set Ω, then
there is no point z0 ∈ Ω such that |f (z)| ≤ |f (z0)| for all z ∈ Ω.

Lemma

If |f (z)| ≤ |f (z0)| for all z ∈ BR(z0), then f (z) = f (z0) for all
z ∈ BR(z0).



Proof of the lemma.

Let Cρ be the circle centered at z0 with radius ρ ∈ (0,R) and
counterclockwise oriented. By Cauchy integral formula,

f (z0) =
1

2πi

ˆ
Cρ

f (z)

z − z0
dz

for all ρ ∈ (0,R). Then

|f (z0)| ≤ 1

2π
max
Cρ

|f (z)|
|z − z0|

· 2πρ ≤ 1

2π
· |f (z0)|

ρ
· 2πρ = |f (z0)|

for all ρ ∈ (0,R). Thus both the inequalities above are equalities,
which implies that

|f (z)| = |f (z0)| on Cρ.

Since ρ ∈ (0,R) is arbitrary, |f (z)| = |f (z0)| on BR(z0). Since |f |
is a constant on BR(z0), f is also a constant on BR(z0), which
completes the proof.



Proof of maximum modulus principle.

Suppose on the contrary that there is z0 ∈ Ω such that
|f (z)| ≤ |f (z0)| for all z ∈ Ω. For any w ∈ Ω, there is a polygonal
line L connecting z0 and w . Let 0 < δ < dist(L, ∂Ω), L can be
covered by finitely many discs Bδ(zk), zk ∈ L, k = 0, 1, ...,N, and
w = zN . Moreover, zk ∈ Bδ(zk−1) for each k = 1, 2, ...,N. By the
lemma, f is a constant on Bδ(z0). Thus f (z1) = f (z0), and hence
|f (z)| ≤ |f (z1)| on Bδ(z1). Continue in this manner, we conclude
that f (w) = f (z0). That is, f is constant on Ω, which leads a
contradiction.



Remark

(i) Under the assumptions of the maximum modulus principle, if
f is continuous on the closure of Ω, then the maximum value
of |f (z)| on the closure of Ω must occur on the boundary of Ω.

(ii) Applying the maximum modulus principle to 1/f (z), the
minimum of |f (z)| cannot be obtained at an interior point of
Ω provided that f (z) 6= 0 for all z ∈ Ω.

(iii) Applying the maximum modulus principle to functions ef (z)

and e−if (z), the maximum principle holds for the real and
imaginary parts of f .



Example

We can use the maximum modulus principle to prove the
fundamental theorem of algebra. Suppose that P is a non-constant
polynomial of order n and has no root on C. Then 1/P(z) is
analytic on BR(0) for all R > 0. As in the proof of the
fundamental theorem of algebra, we have∣∣∣∣ 1

P(z)

∣∣∣∣ ≤ 2

|an|Rn
on the circle {z : |z | = R}

provided R sufficiently large. By the maximum modulus principle,∣∣∣∣ 1

P(z)

∣∣∣∣ ≤ 2

|an|Rn
on BR(0).

Taking R →∞, we conclude that
1

P(z)
= 0 on C, which is a

contradiction.



Example

Let f (z) = (z + 1)2 be defined on the closed triangle T with
vertices z = 0, z = 2 and z = i . Notice that |f (z)| can be
interpreted as the square of the distance between −1 and z ∈ T.
The maximum and minimum values of |f (z)| occur at z = 2 and
z = 0, respectively.



Definition

For zn ∈ C, n ∈ N ∪ {0}, the series
∞∑
n=0

zn converges to the sum z

if the partial sum

N∑
n=0

zn −→ z as N →∞.

If it does not converge, we say that it diverges. And we say that

the series
∞∑
n=0

zn converges absolutely if the series
∞∑
n=0

|zn|

converges.

Proposition

Absolute convergence implies convergence.


