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Theorem (Cauchy-Goursat theorem)

If f is analytic at all points interior to and on a simple closed curve
γ, then

ˆ
γ
f (z)dz = 0.



Theorem (Cauchy-Goursat theorem for rectangles)

If f is differentiable on an open set Ω, and γ is the boundary of a
rectangle contained in Ω, then

ˆ
γ
f (z)dz = 0.

Theorem

If f is differentiable on an open disc Ω, then

ˆ
γ
f (z)dz = 0

for all closed curve γ in Ω.



Proof of Cauchy-Goursat theorem.

Let K be the closed region bounded by γ. By the assumption, f is
differentiable on some bounded open set Ω containing K , and we have
dist(K , ∂Ω) > 3ε for some ε > 0, where ∂Ω is the boundary of Ω. We
may assume γ0 = γ is counterclockwise oriented. And let γ1 be a simple
closed curve lying in the interior of K , also counterclockwise oriented, such
that dist(z , γ0) < ε for every z ∈ γ1. And then we slice the strip bounded
by γ0 and γ1 into small pieces. Each piece is contained in a disc with
radius 2ε contained in Ω. By the previous theorem, summing the integrals
on the boundaries of all the pieces, we obtain

ˆ
γ0

f (z)dz +

ˆ
−γ1

f (z)dz = 0.

Here the integrals on common edges are cancelled out. The above equality
shows that ˆ

γ0

f (z)dz =

ˆ
γ1

f (z)dz .



Proof of Cauchy-Goursat theorem, continued.

We can continue in this manner to obtain a sequence of simple
closed curves γ0, γ1, γ2, ..., γn, ..., with length(γn)→ 0 as
n→∞, and

ˆ
γn

f (z)dz =

ˆ
γn+1

f (z)dz

for all n ∈ N ∪ {0}. Therefore,

ˆ
γ0

f (z)dz =

ˆ
γn

f (z)dz

for all n ∈ N. In addition, for γn, we have∣∣∣∣ˆ
γn

f (z)dz

∣∣∣∣ ≤ max
K
|f | · length(γn) −→ 0 as n→∞.

Thus, we complete the proof.



Definition

A connected set Ω is called simply connected if every simple closed
curve in Ω encloses only points in Ω. If a connected set Ω is not
simply connected, then it is called multiply connected.

Theorem

If f is analytic on an open simply connected domain Ω, then

ˆ
γ
f (z)dz = 0

for all closed curve γ lying in Ω.

Corollary

If f is analytic on an open simply connected domain, then f has an
antiderivative. And the integral of f from one point to another is
independent of paths.



Example

Let γ be any closed curve lying in the disc B2(0). Then

ˆ
γ

sin z

(z2 + 9)5
dz = 0.

Example

Let Ω be an open simply connected set with 1 ∈ Ω, 0 /∈ Ω. Then
there is a branch of the logarithm f on Ω such that

f (x) = ln x for x ∈ R, x near 1.

It can be done by defining

f (z) =

ˆ
γ

dw

w

for any curve γ in Ω from 1 to z.



Example (continued)

Notice that the integral of
1

z
from 1 to z is independent of the

choice of γ by the previous corollary. A similar argument in the

proof of the theorem in Lecture 9, page 6, gives f ′(z) =
1

z
on Ω,

and hence (
ze−f (z)

)′
= 0 on Ω.

Therefore, ze−f (z) is a constant. By taking the value at z = 1, we
conclude that ze−f (z) ≡ 1, that is,

ef (z) = z on Ω.

As for x ∈ R near 1, we have

f (x) =

ˆ x

1

dy

y
= ln x .



Theorem

Let γ0, γ1, ..., γn be simple closed curves with counterclockwise
orientation. γk ’s, k = 1, ..., n, lying in the interior of γ0, are
disjoint, whose interiors have no points in common. If f is analytic
on all the curves and throughout the multiply connected domain
consisting of the points inside γ0 and exterior to each γk ,
k = 1, ..., n, then

ˆ
γ0

f (z)dz =
n∑

k=1

ˆ
γk

f (z)dz .

Proof.

The theorem follows by dividing the domain into finitely many
simply connected domains.



Corollary

Let γ1 and γ2 be two simple closed curves with counterclockwise
orientation. And γ1 lies in the interior enclosed by γ2. If f is
analytic on the closed set consisting of γ1, γ2 and all points
between them, then

ˆ
γ1

f (z)dz =

ˆ
γ2

f (z)dz .



Example

Let γ be a simple closed curve with counterclockwise orientation
surrounding the origin. We are going to evaluate the integral

ˆ
γ

dz

z
.

By using the definition of contour integrals, one can see that

ˆ
C

dz

z
= 2πi

for any circle C centered at the origin with counterclockwise
orientation. Thus, by the previous corollary,

ˆ
γ

dz

z
= 2πi .



Theorem (Cauchy integral formula)

Let Ω be the open set enclosed by a simple closed curve γ with
counterclockwise orientation. If f is analytic on Ω, the closure of
Ω, then

f (z0) =
1

2πi

ˆ
γ

f (z)

z − z0
dz

for all z0 ∈ Ω.



Proof.

For z0 ∈ Ω, let Cρ be the circle centered at z0 with radius ρ
sufficiently small such that Cρ ⊂ Ω. We assume that Cρ is
counterclockwise oriented. By the previous corollary,

ˆ
γ

f (z)

z − z0
dz =

ˆ
Cρ

f (z)

z − z0
dz .

Therefore, we have

ˆ
γ

f (z)

z − z0
dz − f (z0)

ˆ
Cρ

1

z − z0
dz =

ˆ
Cρ

f (z)− f (z0)

z − z0
dz . (1)

Also, we recall that,
ˆ
Cρ

1

z − z0
dz = 2πi .



Proof, continued.

Then (1) becomes

ˆ
γ

f (z)

z − z0
dz − 2πif (z0) =

ˆ
Cρ

f (z)− f (z0)

z − z0
dz .

For the right-hand side on the last equality, we have∣∣∣∣∣
ˆ
Cρ

f (z)− f (z0)

z − z0
dz

∣∣∣∣∣ ≤ sup
z∈Ω\{z0}

∣∣∣∣ f (z)− f (z0)

z − z0

∣∣∣∣ · 2πρ −→ 0

as ρ→ 0. Here sup
z∈Ω\{z0}

∣∣∣∣ f (z)− f (z0)

z − z0

∣∣∣∣ is finite since f is analytic

on Ω. We conclude that
ˆ
γ

f (z)

z − z0
dz − 2πif (z0) = 0.

The theorem then follows.



Example

Let f (z) =
cos z

z2 + 9
. To evaluate the integral

ˆ
γ

cos z

z (z2 + 9)
dz ,

where γ is the unit circle centered at the origin with
counterclockwise orientation, we have

ˆ
γ

cos z

z (z2 + 9)
dz =

ˆ
γ

f (z)

z − 0
dz = 2πif (0) =

2πi

9
.



Theorem (generalized Cauchy integral formula)

Let Ω is the open set enclosed by a simple closed curve γ with
counterclockwise orientation. If f is analytic on some open set
containing Ω, the closure of Ω, then f is differentiable of all orders
in Ω. Moreover,

f (n)(z0) =
n!

2πi

ˆ
γ

f (z)

(z − z0)n+1
dz

for all z0 ∈ Ω, n ∈ N ∪ {0}.


