MATH2230B Complex Variables with Applications

Lecturer: Chia-Yu Hsieh

Department of Mathematics The Chinese University of Hong Kong

February 10, 2021

Theorem (Cauchy-Goursat theorem)

If f is analytic at all points interior to and on a simple closed curve $\gamma,$ then

$$\int_{\gamma} f(z) dz = 0.$$

Theorem (Cauchy-Goursat theorem for rectangles)

If f is differentiable on an open set Ω , and γ is the boundary of a rectangle contained in Ω , then

$$\int_{\gamma} f(z) dz = 0.$$

Proof.

Let R_0 be the closed rectangle with boundary γ . Assume that $\gamma_0 = \gamma = I_1 \cup I_2 \cup I_3 \cup I_4$, counterclockwise oriented. Let z_k be the midpoint of I_k , k = 1, ..., 4. By connecting z_1 and z_3 , and connecting z_2 and z_4 , we obtain four smaller rectangles with boundaries $\gamma_{1,1}$, $\gamma_{1,2}$, $\gamma_{1,3}$ and $\gamma_{1,4}$. We assume that $\gamma_{1,j}$, j = 1, ..., 4, are all counterclockwise oriented. We have

$$\begin{split} \int_{\gamma_0} f(z)dz &= \int_{\gamma_{1,1}} f(z)dz + \int_{\gamma_{1,2}} f(z)dz \\ &+ \int_{\gamma_{1,3}} f(z)dz + \int_{\gamma_{1,4}} f(z)dz \end{split}$$

By the triangle inequality,

$$\begin{split} \left| \int_{\gamma_0} f(z) dz \right| &\leq \left| \int_{\gamma_{1,1}} f(z) dz \right| + \left| \int_{\gamma_{1,2}} f(z) dz \right| \\ &+ \left| \int_{\gamma_{1,3}} f(z) dz \right| + \left| \int_{\gamma_{1,4}} f(z) dz \right|. \end{split}$$

There must be a $j \in \{1, 2, 3, 4\}$ such that

$$\left|\int_{\gamma_0} f(z) dz\right| \leq 4 \left|\int_{\gamma_{1,j}} f(z) dz\right|$$

Let $\gamma_1 = \gamma_{1,j}$ with j such that the last inequality holds, and R_1 be the closed rectangle with boundary γ_1 . We can repeat the same process. For γ_n given, we divide the rectangle into four parts with boundary $\gamma_{n+1,j}$, j = 1, ..., 4. And we can choose a j such that

$$\left|\int_{\gamma_n} f(z) dz\right| \leq 4 \left|\int_{\gamma_{n+1,j}} f(z) dz\right|$$

And then we denote $\gamma_{n+1} = \gamma_{n+1,j}$ with j such that the last inequality holds.

We obtain a sequence of rectangles R_n with boundaries γ_n , $n \in \mathbb{N} \cup \{0\}$, such that

$$R_0 \supset R_1 \supset \ldots \supset R_n \supset \ldots \tag{1}$$

and

$$\left|\int_{\gamma_0} f(z)dz\right| \leq 4^n \left|\int_{\gamma_n} f(z)dz\right|.$$
 (2)

Since R_n 's are compact satisfying (1) with $\operatorname{diam}(R_n) \to 0$ as $n \to \infty$, there is a unique $z_0 \in \Omega$ such that $z_0 \in R_n$ for all n. Since f is differentiable at z_0 ,

$$\lim_{z\to z_0}\left|\frac{f(z)-f(z_0)}{z-z_0}-f'(z_0)\right|=0.$$

On each γ_n , since constants and polynomials have antiderivatives,

$$\int_{\gamma_n} f(z) dz = \int_{\gamma_n} \left[f(z) - f(z_0) - f'(z_0)(z - z_0) \right] dz$$
$$= \int_{\gamma_n} \left[\frac{f(z) - f(z_0)}{z - z_0} - f'(z_0) \right] (z - z_0) dz.$$

Therefore,

$$\begin{split} & \left| \int_{\gamma_n} f(z) dz \right| \\ & \leq \sup_{z \in \gamma_n} \left| \frac{f(z) - f(z_0)}{z - z_0} - f'(z_0) \right| \sup_{z \in \gamma_n} |z - z_0| \cdot \operatorname{length}(\gamma_n). \end{split}$$

Notice that

$$\sup_{z\in\gamma_n}|z-z_0|\leq 2^{-n}L,$$

where L is the length of the diagonal of R_0 , and

$$length(\gamma_n) = 2^{-n} length(\gamma).$$

Therefore,

$$\left|\int_{\gamma_n} f(z)dz\right| \leq 4^{-n}L \cdot \operatorname{length}(\gamma) \sup_{z \in \gamma_n} \left|\frac{f(z) - f(z_0)}{z - z_0} - f'(z_0)\right|.$$
(3)

Combining (2) and (3), we obtain

$$\left|\int_{\gamma} f(z)dz\right| \leq L \cdot \operatorname{length}(\gamma) \sup_{z \in \gamma_n} \left|\frac{f(z) - f(z_0)}{z - z_0} - f'(z_0)\right| \longrightarrow 0$$

as $n \to \infty$.

Theorem

If f is differentiable on an open disc Ω , then

$$\int_{\gamma} f(z) dz = 0$$

for all closed curve γ in Ω .

Proof.

Without loss of generality, we may assume that the disc is centered at 0. Define

$$F(z) = \int_{\gamma_1} f(z) dz + \int_{\gamma_2} f(z) dz,$$

where γ_1 is the line segment from 0 to $\operatorname{Re} z$, and γ_2 is the line segment from $\operatorname{Re} z$ to z. By Cauchy-Goursat theorem for rectangles, for $h = h_1 + h_2 i$ with |h| sufficiently small,

$$F(z+h)-F(z)=\int_{\gamma}f(z)dz,$$

where γ is the polygonal line starting from z to $z + h_1$ and then from $z + h_1$ to z + h.

We have

$$\begin{aligned} \left| \frac{F(z+h) - F(z)}{h} - f(z) \right| \\ &= \left| \frac{1}{h} \left[\int_0^1 (f(z+h_1t) - f(z)) h_1 dt \right. \\ &+ \int_0^1 (f(z+h_1+ih_2s) - f(z)) ih_2 ds \right] \right| \\ &\leq \sup_{t \in [0,1], s \in [0,1]} \left[|f(z+h_1t) - f(z)| + |f(z+h_1+ih_2s) - f(z)| \right] \\ &\longrightarrow 0 \quad \text{as } h \to 0. \end{aligned}$$

That is, F is an antiderivative of f, and hence the theorem follows.