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Theorem (Cauchy-Goursat theorem)

If f is analytic at all points interior to and on a simple closed curve
γ, then

ˆ
γ
f (z)dz = 0.

Theorem (Cauchy-Goursat theorem for rectangles)

If f is differentiable on an open set Ω, and γ is the boundary of a
rectangle contained in Ω, then

ˆ
γ
f (z)dz = 0.



Proof.

Let R0 be the closed rectangle with boundary γ. Assume that
γ0 = γ = l1∪ l2∪ l3∪ l4, counterclockwise oriented. Let zk be the midpoint
of lk , k = 1, ..., 4. By connecting z1 and z3, and connecting z2 and z4, we
obtain four smaller rectangles with boundaries γ1,1, γ1,2, γ1,3 and γ1,4. We
assume that γ1,j , j = 1, ..., 4, are all counterclockwise oriented. We have

ˆ
γ0

f (z)dz =

ˆ
γ1,1

f (z)dz +

ˆ
γ1,2

f (z)dz

+

ˆ
γ1,3

f (z)dz +

ˆ
γ1,4

f (z)dz .

By the triangle inequality,∣∣∣∣ˆ
γ0

f (z)dz

∣∣∣∣ ≤
∣∣∣∣∣
ˆ
γ1,1

f (z)dz

∣∣∣∣∣ +

∣∣∣∣∣
ˆ
γ1,2

f (z)dz

∣∣∣∣∣
+

∣∣∣∣∣
ˆ
γ1,3

f (z)dz

∣∣∣∣∣ +

∣∣∣∣∣
ˆ
γ1,4

f (z)dz

∣∣∣∣∣ .



Proof, continued.

There must be a j ∈ {1, 2, 3, 4} such that∣∣∣∣ˆ
γ0

f (z)dz

∣∣∣∣ ≤ 4

∣∣∣∣∣
ˆ
γ1,j

f (z)dz

∣∣∣∣∣ .
Let γ1 = γ1,j with j such that the last inequality holds, and R1 be
the closed rectangle with boundary γ1. We can repeat the same
process. For γn given, we divide the rectangle into four parts with
boundary γn+1,j , j = 1, ..., 4. And we can choose a j such that∣∣∣∣ˆ

γn

f (z)dz

∣∣∣∣ ≤ 4

∣∣∣∣∣
ˆ
γn+1,j

f (z)dz

∣∣∣∣∣ .
And then we denote γn+1 = γn+1,j with j such that the last
inequality holds.



Proof, continued.

We obtain a sequence of rectangles Rn with boundaries γn,
n ∈ N ∪ {0}, such that

R0 ⊃ R1 ⊃ ... ⊃ Rn ⊃ ... (1)

and ∣∣∣∣ˆ
γ0

f (z)dz

∣∣∣∣ ≤ 4n
∣∣∣∣ˆ
γn

f (z)dz

∣∣∣∣ . (2)

Since Rn’s are compact satisfying (1) with diam(Rn)→ 0 as
n→∞, there is a unique z0 ∈ Ω such that z0 ∈ Rn for all n. Since
f is differentiable at z0,

lim
z→z0

∣∣∣∣ f (z)− f (z0)

z − z0
− f ′(z0)

∣∣∣∣ = 0.



Proof, continued.

On each γn, since constants and polynomials have antiderivatives,

ˆ
γn

f (z)dz =

ˆ
γn

[
f (z)− f (z0)− f ′(z0)(z − z0)

]
dz

=

ˆ
γn

[
f (z)− f (z0)

z − z0
− f ′(z0)

]
(z − z0)dz .

Therefore, ∣∣∣∣ˆ
γn

f (z)dz

∣∣∣∣
≤ sup

z∈γn

∣∣∣∣ f (z)− f (z0)

z − z0
− f ′(z0)

∣∣∣∣ sup
z∈γn
|z − z0| · length(γn).

Notice that

sup
z∈γn
|z − z0| ≤ 2−nL,



Proof, continued.

where L is the length of the diagonal of R0, and

length(γn) = 2−nlength(γ).

Therefore,∣∣∣∣ˆ
γn

f (z)dz

∣∣∣∣ ≤ 4−nL · length(γ) sup
z∈γn

∣∣∣∣ f (z)− f (z0)

z − z0
− f ′(z0)

∣∣∣∣ . (3)

Combining (2) and (3), we obtain∣∣∣∣ˆ
γ
f (z)dz

∣∣∣∣ ≤ L · length(γ) sup
z∈γn

∣∣∣∣ f (z)− f (z0)

z − z0
− f ′(z0)

∣∣∣∣ −→ 0

as n→∞.



Theorem

If f is differentiable on an open disc Ω, then

ˆ
γ
f (z)dz = 0

for all closed curve γ in Ω.



Proof.

Without loss of generality, we may assume that the disc is centered
at 0. Define

F (z) =

ˆ
γ1

f (z)dz +

ˆ
γ2

f (z)dz ,

where γ1 is the line segment from 0 to Re z , and γ2 is the line
segment from Re z to z . By Cauchy-Goursat theorem for
rectangles, for h = h1 + h2i with |h| sufficiently small,

F (z + h)− F (z) =

ˆ
γ
f (z)dz ,

where γ is the polygonal line starting from z to z + h1 and then
from z + h1 to z + h.



Proof, continued.

We have∣∣∣∣F (z + h)− F (z)

h
− f (z)

∣∣∣∣
=

∣∣∣∣1

h

[ˆ 1

0
(f (z + h1t)− f (z)) h1dt

+

ˆ 1

0
(f (z + h1 + ih2s)− f (z)) ih2ds

]∣∣∣∣
≤ sup

t∈[0,1], s∈[0,1]
[|f (z + h1t)− f (z)|+ |f (z + h1 + ih2s)− f (z)|]

−→ 0 as h→ 0.

That is, F is an antiderivative of f , and hence the theorem
follows.


