MATH2230B Complex Variables with Applications

Lecturer: Chia-Yu Hsieh

Department of Mathematics The Chinese University of Hong Kong

February 8, 2021

Definition

Let f be a function defined on an open connected set Ω . If there is a differentiable function F such that F' = f on Ω , then we call F an antiderivative of f.

Remark

Antiderivatives of a given function are unique up to a constant.

Theorem

Let f be a continuous function on an open connected set Ω . If f has an antiderivative F on Ω , then for any piecewise smooth curve γ from z_1 to z_2 for some $z_1, z_2 \in \Omega$, we have

$$\int_{\gamma} f(z) dz = F(z_2) - F(z_1).$$

Remark

In particular, if f has an antiderivative, then the integral of f along any piecewise smooth closed curve equals to 0.

Proof.

Let γ be parametrized by $z(t) : [a, b] \rightarrow \Omega$. Case 1: γ is smooth: Suppose that F = U + iV, z(t) = x(t) + iy(t), by using the Cauchy-Riemann equations, we have $\frac{d}{dt}F(z(t)) = \frac{d}{dt}F(x(t) + iy(t))$ $=\frac{d}{dt}U(x(t),y(t))+i\frac{d}{dt}V(x(t),y(t))$ $= U_{x}(x(t), y(t))x'(t) + U_{y}(x(t), y(t))y'(t)$ $+ iV_{x}(x(t), y(t))x'(t) + iV_{y}(x(t), y(t))y'(t)$ $= U_{x}(x(t), y(t))x'(t) - V_{x}(x(t), y(t))y'(t)$ $+ iV_{x}(x(t), y(t))x'(t) + iU_{x}(x(t), y(t))y'(t)$ $= (U_x(x(t), y(t)) + iV_x(x(t), y(t)))(x'(t) + iy'(t))$ = f(z(t))z'(t).

Proof, continued.

Therefore,

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(z(t))z'(t)dt = \int_{a}^{b} \frac{d}{dt}F(z(t))dt$$
$$= F(z(b)) - F(z(a)) = F(z_2) - F(z_1).$$

Case 2: γ is only piecewise smooth: Let z be smooth on each interval $[a_{k-1}, a_k]$, k = 1, ..., n, where $a = a_0 < a_1 < ... < a_n = b$. Then

$$\int_{\gamma} f(z) dz = \sum_{k=1}^{n} [F(z(a_k)) - F(z(a_{k-1}))]$$

= $F(z(b)) - F(z(a)) = F(z_2) - F(z_1)$

Theorem

Let f be a continuous function on an open connected set Ω . If

$$\int_{\gamma} f(z) dz = 0$$

for all piecewise smooth closed curve γ in $\Omega,$ then f has an antiderivative.

Lemma

Under the same assumption as in the above theorem, given $z_1, z_2 \in \Omega$,

$$\int_{\gamma_1} f(z) dz = \int_{\gamma_2} f(z) dz$$

for any piecewise smooth curves γ_1 and γ_2 from z_1 to z_2 .

Proof of the lemma.

Let γ_1 and γ_2 be two piecewise smooth curves from z_1 to z_2 , $z_1, z_2 \in \Omega$, we have

$$\int_{\gamma_1} f(z)dz - \int_{\gamma_2} f(z)dz = \int_{\gamma_1\cup(-\gamma_2)} f(z)dz = 0.$$

Proof of the theorem.

Fix $z_0 \in \Omega$. In view of the lemma, we can define a function

$$F(z) = \int_{\gamma_{z_0,z}} f(w) dw, \quad z \in \Omega,$$

where $\gamma_{z_0,z}$ is any smooth curve from z_0 to z. Then, for each $z \in \Omega$ and $h \in \mathbb{C}$ with |h| sufficiently small,

$$F(z+h) - F(z) = \int_{\gamma_{z_0,z+h}} f(w) dw - \int_{\gamma_{z_0,z}} f(w) dw$$
$$= \int_{\gamma_{z,z+h}} f(w) dw,$$

where $\gamma_{z,z'}$ denotes a curve lying in Ω from z to z'.

Proof of the theorem, continued.

Since the integration is independent of the choice of curves, we have

$$F(z+h)-F(z)=\int_0^1 f(z+ht)hdt,$$

and hence

$$\frac{F(z+h) - F(z)}{h} - f(z) = \frac{1}{h} \int_0^1 [f(z+ht) - f(z)] h dt$$
$$= \int_0^1 [f(z+ht) - f(z)] dt.$$

Notice that by the continuity of f,

$$\left|\int_0^1 \left[f(z+ht)-f(z)\right]dt\right| \leq \sup_{t\in[0,1]}|f(z+ht)-f(z)| \to 0$$

as $h \rightarrow 0$, which implies

$$\lim_{h\to 0}\frac{F(z+h)-F(z)}{h}=f(z).$$

Remark

To summarize, the following three statements are equivalent for a continuous function f.

- (i) f has an antiderivative.
- (ii) Integration of f from one point to another is independent of the choice of curves.
- (iii) Integrals of f along closed curves have value 0.

Example

The continuous function $f(z) = e^{\pi z}$ has an antiderivative $F(z) = e^{\pi z}/\pi$ on \mathbb{C} . Hence, for any piecewise smooth curve γ from i to i/2, we have

$$\int_{\gamma} e^{\pi z} dz = \frac{e^{\pi z}}{\pi} \bigg|_{i}^{i/2} = \frac{1+i}{\pi}.$$

Example

The function $f(z) = 1/z^2$ has an antiderivative F(z) = -1/z on $\mathbb{C} \setminus \{0\}$. Hence,

$$\int_{\gamma} \frac{dz}{z^2} = 0$$

where γ is the unit circle parametrized by $z(\theta) = e^{i\theta}$, $\theta \in [-\pi, \pi]$. As for the function g(z) = 1/z, the integral of g along γ cannot be evaluated in a similar way. Notice that given a branch of the logarithm, $G(z) = \log z$ is an antiderivative of 1/z on the domain where the logarithm is defined. But the domain of G cannot contain the whole curve γ .

Example

To evaluate the integral

$$\int_{\gamma} \frac{dz}{z},$$

where γ is defined as in the last example, we can divide γ into two parts: γ_1 is the right half from -i to i parametrized by $z_1(\theta) = e^{i\theta}, \ \theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, and γ_2 is the left half from i to -iparametrized by $z_2(\theta) = e^{i\theta}, \ \theta \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$. For γ_1 , we know that the principal branch of the logarithm is an antiderivative of 1/z on an open set containing γ_1 . Thus,

$$\int_{\gamma_1} \frac{dz}{z} = \log z \Big|_{-i}^i = \log i - \log(-i) = \frac{\pi i}{2} - \left(-\frac{\pi i}{2}\right) = \pi i,$$

where we used the principal branch of the logarithm here.

Example (continued)

As for γ_2 , by using the branch of the logarithm

 $\log z = \ln |z| + i\theta$, where $\theta \in \arg z$, $\theta \in (0, 2\pi)$,

defined on $\{|z|>0, \operatorname{Arg} z\neq 0\},$ we have

$$\int_{\gamma_2} \frac{dz}{z} = \log z \Big|_i^{-i} = \log(-i) - \log i = \frac{3\pi i}{2} - \frac{\pi i}{2} = \pi i.$$

Therefore,

$$\int_{\gamma} \frac{dz}{z} = \int_{\gamma_1} \frac{dz}{z} + \int_{\gamma_2} \frac{dz}{z} = 2\pi i.$$

Example

Let f be the square-root function on $\left\{ |z| > 0, \operatorname{Arg} z \neq -\frac{\pi}{2} \right\}$ defined by $f(z) = z^{1/2} = e^{\frac{1}{2}\log z} = |z|^{1/2}e^{i\theta/2} \quad \text{if } z = |z|e^{i\theta}, \quad \theta \in \left(-\frac{\pi}{2}, \frac{3\pi}{2}\right).$

That is, the power function is defined by using the following branch of the logarithm

$$\log z = \ln |z| + i\theta$$
, where $\theta \in \arg z$, $\theta \in \left(-\frac{\pi}{2}, \frac{3\pi}{2}\right)$.

If γ is a curve from -3 to 3 lying above the real axis except for the endpoints, noticing that

$$\left(z^{3/2}\right)' = \frac{3}{2}z^{1/2}$$

we have

$$\int_{\gamma} f(z) dz = \frac{2}{3} z^{3/2} \Big|_{-3}^{3} = 2\sqrt{3} (1+i).$$

Theorem (Cauchy-Goursat theorem)

If f is analytic at all points interior to and on a simple closed curve $\gamma,$ then

$$\int_{\gamma} f(z) dz = 0.$$

Theorem (Cauchy-Goursat theorem for rectangles)

If f is differentiable on an open set Ω , and γ is the boundary of a rectangle contained in Ω , then

$$\int_{\gamma} f(z) dz = 0.$$