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Definition

Let f be a function defined on an open connected set Ω. If there is
a differentiable function F such that F ′ = f on Ω, then we call F
an antiderivative of f .

Remark

Antiderivatives of a given function are unique up to a constant.



Theorem

Let f be a continuous function on an open connected set Ω. If f
has an antiderivative F on Ω, then for any piecewise smooth curve
γ from z1 to z2 for some z1, z2 ∈ Ω, we have

ˆ
γ
f (z)dz = F (z2)− F (z1).

Remark

In particular, if f has an antiderivative, then the integral of f along
any piecewise smooth closed curve equals to 0.



Proof.

Let γ be parametrized by z(t) : [a, b]→ Ω.
Case 1: γ is smooth:
Suppose that F = U + iV , z(t) = x(t) + iy(t), by using the
Cauchy-Riemann equations, we have

d

dt
F (z(t)) =

d

dt
F (x(t) + iy(t))

=
d

dt
U(x(t), y(t)) + i

d

dt
V (x(t), y(t))

= Ux(x(t), y(t))x ′(t) + Uy (x(t), y(t))y ′(t)

+ iVx(x(t), y(t))x ′(t) + iVy (x(t), y(t))y ′(t)

= Ux(x(t), y(t))x ′(t)− Vx(x(t), y(t))y ′(t)

+ iVx(x(t), y(t))x ′(t) + iUx(x(t), y(t))y ′(t)

= (Ux(x(t), y(t)) + iVx(x(t), y(t)))(x ′(t) + iy ′(t))

= f (z(t))z ′(t).



Proof, continued.

Therefore,

ˆ
γ
f (z)dz =

ˆ b

a
f (z(t))z ′(t)dt =

ˆ b

a

d

dt
F (z(t))dt

= F (z(b))− F (z(a)) = F (z2)− F (z1).

Case 2: γ is only piecewise smooth:
Let z be smooth on each interval [ak−1, ak ], k = 1, ..., n, where
a = a0 < a1 < ... < an = b. Then

ˆ
γ
f (z)dz =

n∑
k=1

[F (z(ak))− F (z(ak−1))]

= F (z(b))− F (z(a)) = F (z2)− F (z1).



Theorem

Let f be a continuous function on an open connected set Ω. If

ˆ
γ
f (z)dz = 0

for all piecewise smooth closed curve γ in Ω, then f has an
antiderivative.



Lemma

Under the same assumption as in the above theorem, given
z1, z2 ∈ Ω,

ˆ
γ1

f (z)dz =

ˆ
γ2

f (z)dz

for any piecewise smooth curves γ1 and γ2 from z1 to z2.

Proof of the lemma.

Let γ1 and γ2 be two piecewise smooth curves from z1 to z2,
z1, z2 ∈ Ω, we have

ˆ
γ1

f (z)dz −
ˆ
γ2

f (z)dz =

ˆ
γ1∪(−γ2)

f (z)dz = 0.



Proof of the theorem.

Fix z0 ∈ Ω. In view of the lemma, we can define a function

F (z) =

ˆ
γz0,z

f (w)dw , z ∈ Ω,

where γz0,z is any smooth curve from z0 to z . Then, for each
z ∈ Ω and h ∈ C with |h| sufficiently small,

F (z + h)− F (z) =

ˆ
γz0,z+h

f (w)dw −
ˆ
γz0,z

f (w)dw

=

ˆ
γz,z+h

f (w)dw ,

where γz,z ′ denotes a curve lying in Ω from z to z ′.



Proof of the theorem, continued.

Since the integration is independent of the choice of curves, we have

F (z + h)− F (z) =

ˆ 1

0
f (z + ht)hdt,

and hence

F (z + h)− F (z)

h
− f (z) =

1

h

ˆ 1

0
[f (z + ht)− f (z)] hdt

=

ˆ 1

0
[f (z + ht)− f (z)] dt.

Notice that by the continuity of f ,∣∣∣∣ˆ 1

0
[f (z + ht)− f (z)] dt

∣∣∣∣ ≤ sup
t∈[0,1]

|f (z + ht)− f (z)| → 0

as h→ 0, which implies

lim
h→0

F (z + h)− F (z)

h
= f (z).



Remark

To summarize, the following three statements are equivalent for a
continuous function f .

(i) f has an antiderivative.

(ii) Integration of f from one point to another is independent of
the choice of curves.

(iii) Integrals of f along closed curves have value 0.

Example

The continuous function f (z) = eπz has an antiderivative
F (z) = eπz/π on C. Hence, for any piecewise smooth curve γ
from i to i/2, we have

ˆ
γ
eπzdz =

eπz

π

∣∣∣∣i/2
i

=
1 + i

π
.



Example

The function f (z) = 1/z2 has an antiderivative F (z) = −1/z on
C\{0}. Hence,

ˆ
γ

dz

z2
= 0,

where γ is the unit circle parametrized by z(θ) = e iθ, θ ∈ [−π, π].
As for the function g(z) = 1/z, the integral of g along γ cannot
be evaluated in a similar way. Notice that given a branch of the
logarithm, G (z) = log z is an antiderivative of 1/z on the domain
where the logarithm is defined. But the domain of G cannot
contain the whole curve γ.



Example

To evaluate the integral

ˆ
γ

dz

z
,

where γ is defined as in the last example, we can divide γ into two
parts: γ1 is the right half from −i to i parametrized by

z1(θ) = e iθ, θ ∈
[
−π

2
,
π

2

]
, and γ2 is the left half from i to −i

parametrized by z2(θ) = e iθ, θ ∈
[
π

2
,

3π

2

]
. For γ1, we know that

the principal branch of the logarithm is an antiderivative of 1/z on
an open set containing γ1. Thus,

ˆ
γ1

dz

z
= log z

∣∣∣∣i
−i

= log i − log(−i) =
πi

2
−
(
−πi

2

)
= πi ,

where we used the principal branch of the logarithm here.



Example (continued)

As for γ2, by using the branch of the logarithm

log z = ln |z |+ iθ, where θ ∈ arg z , θ ∈ (0, 2π),

defined on {|z | > 0,Arg z 6= 0}, we have

ˆ
γ2

dz

z
= log z

∣∣∣∣−i
i

= log(−i)− log i =
3πi

2
− πi

2
= πi .

Therefore,
ˆ
γ

dz

z
=

ˆ
γ1

dz

z
+

ˆ
γ2

dz

z
= 2πi .



Example

Let f be the square-root function on
{
|z | > 0,Arg z 6= −π

2

}
defined by

f (z) = z1/2 = e
1
2
log z = |z |1/2e iθ/2 if z = |z |e iθ, θ ∈

(
−π

2
,

3π

2

)
.

That is, the power function is defined by using the following branch of the
logarithm

log z = ln |z |+ iθ, where θ ∈ arg z , θ ∈
(
−π

2
,

3π

2

)
.

If γ is a curve from −3 to 3 lying above the real axis except for the
endpoints, noticing that (

z3/2
)′

=
3

2
z1/2,

we have

ˆ
γ
f (z)dz =

2

3
z3/2

∣∣∣∣3
−3

= 2
√

3 (1 + i) .



Theorem (Cauchy-Goursat theorem)

If f is analytic at all points interior to and on a simple closed curve
γ, then

ˆ
γ
f (z)dz = 0.

Theorem (Cauchy-Goursat theorem for rectangles)

If f is differentiable on an open set Ω, and γ is the boundary of a
rectangle contained in Ω, then

ˆ
γ
f (z)dz = 0.


