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If f'(z) = 0 on an open connected set Q, then f is a constant on .

If an open set Q) is connected, then it is polygonally connected.
That is, for any z1,z» € €, z1 and z» can be connected by a
polygonal line consisting of finitely many line segments in 2.




Proof of the lemma.

If Q = ¢, then there is nothing to prove. By choosing a point
7o € Q, we define the set

S ={z € Q: z can be connected to z by a polygonal line} .

Given a point z; € S, since Q is open, there is £1 > 0 small enough
such that B, (z1) C Q. Notice that any point in B.,(z1) can be
connected to z; by a line segment. Thus, B, (z1) C S, which
implies that S is open.

Suppose that Q\S # ¢, say, there is z € Q\S. Again, we have
B.,(z2) C S for some g3 > 0. All point in B.,(z) do not belong to
S. Otherwise, z; can be polygonally connected to zp. Thus, Q\S
is also open, which leads a contradiction. We conclude that

Q\S = ¢, i.e., S = Q. Therefore, for any two points wy, wy € Q,
they can be connected by a polygonal line in €2 by combining one
polygonal line connecting zy to w; and another one connecting zy
to wy. L]




Proof of the theorem.
Let f(z) = u(x,y) + iv(x,y) for z= x + yi. Since f'(z) =0,

f'(z) = ux(x,y) + ivx(x,y) = 0.
In view of the Cauchy-Riemann equations, we have
uc=u,=vx=v, =0 on Q.

Next, if z1,zp € Q such that the line segment L between z; and z
lie in €, we will show that f(z) is a constant on L. L can be
parametrized by

L:{zl+sw:s€ [0,|22—21|]}7

. Z2 — 21 . . . . .
where w = wy + woi = | | is the unit vector in the direction
Z2— 271
from z; to zo. Now, we consider the restriction of u on L, i.e.,

u(x1 + wis, y1 + wes), where z3 = x1 + y1i.




Proof of the theorem, continued.

We have

d
gu(m + wis,y1 + was) = Vu

: (W17 W2)7
(x1t+wis,y1+wes)
where Vu = (uy, uy) is the gradient of u. Since uy = u, =0, it
follows that

Eu(xl +wis,y1 +wps) =0 on [0,]|z — z]].

This gives v is a constant on L. Since there is always a finite
number of line segments connecting any two points in Q, u is a
constant on €. Similarly, by applying the same arguments to v, v
is a constant on €. Therefore, f is a constant on €. Ol
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Example

Suppose that f and f are both differentiable on an open connected
set 2, we are going to show that f must be a constant.

By writing f(z) = u(x,y) + iv(x,y), z = x + yi, we have

f(z) = u(x,y) — iv(x,y). Since f is differentiable on Q, the
Cauchy-Riemann equations

ux=v, and u,=—vy, holdon .
Since f is also differentiable on Q, the Cauchy-Riemann equations
ux=—vy, and u, = v, holdon .

Therefore, we have uy = u, = v, = v, = 0 on £, which implies
f'(z) =0 on Q. Therefore, f is a constant.




Example

Suppose that f is differentiable on an open connected set Q. If |f|
is a constant on S0, we are going to that f must be a constant.

If |[f| =0 on Q, then it follows that f =0 on 2. Now, we assume
that |f| = ¢ # 0 on §Q, we have

f(2)f(z) = |f]* = ® #0.

Notice that f # 0 on Q. And hence

f(z) = @

is differentiable on 2. The last example implies that f is a
constant.




Suppost that f = u + iv is analytic on an open set ). Then u and v are
harmonic functions on Q.

Proof.

To show this, we need to use the fact that if a complex function is analytic
at a point, then its real and imaginary parts have continuous partial
derivatives of all orders there. Since v and v satisfy the Cauchy-Riemann
equations, it holds that

ux=v, and u, =—vx on .
Therefore,
Uxx = Vi and  uy,, = —v,, on .
We get
Uxx + Uy = Viy — Vo, =0 0on Q.

That is, u is a harmonic function on Q. The arguments for v is similar. [




Definition
Let w be a complex-valued function of a real variable t, written as

w(t) = u(t) + iv(t),

for some real-valued functions u and v. The derivative of w is
defined by

d / / -
2w (6) = w/(0) = u(8) + iv'(t),

provided that u and v are differentiable. And the definite integral
of w over an interval [a, b] is defined by

/ab w(t)dt = /ab u(t)dt + //ab v(t)dt

provided the integrals on the right-hand side exist.




/4 /4
/ etdt = / (cost+isint)dt
0 0

/4 /4
= / cos tdt + i/ sin tdt
0 0
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Proposition

If w(t) = u(t) + iv(t) is a complex-valued function on |[a, b], and
W'(t) = w(t), ie., W(t) = U(t) + iV(t) with U'(t) = u(t),
V/(t) = v(t), then
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Proof.
By the fundamental theorem of calculus,
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A (parametrized) curve «y is a set
v={z=12z(t) =x(t) + y(t)i : t € [a, b]} , (*)

where x(t) and y(t) are continuous real functions on [a, b]. 7 is
called a simple curve or a Jordan curve if it does not intersect
itself, that is, z(t1) # z(t2) unless t; = tp. ~y is called a simple
closed curve if it does not intersect itself except for z(a) = z(b). If
x(t) and y(t) are continuously differentiable on [a, b], then ~y is
called a smooth curve. ~y is called a piecewise smooth curve if
there are points

a=a<a<..<a,=b,

such that x(t) and y(t) are smooth in each interval [ax_1, ak],
k=1,..,n.




(i) The set defined by (*) is only a geometric object, which does
not have a direction. But if we parametrize it by the
parametrization z(t) = x(t) + y(t)i, then it is assigned a
direction.

(ii) The length of a smooth curve v = {z = z(t) : t € [a, b]} is

b
length(v):/ |2/ (t)|dt.

If v is only piecewise smooth, its length is the sum of the
lengths of its smooth parts.




Definition

Given curve y defined in (*), we use — to denote the same set of
points of (*) but with reverse direction, say,

—y={z(a+b—t):te€[ab]}.

Definition

Two parametrization zi(t) : [a, b] — C and z(t) : [c,d] — C are
called equivalent if there exists a continuously differentiable
bijection s — t(s) from [c, d] to [a, b] such that t'(s) > 0 and

2(s) = z1(t(s))-




Example

Here are some examples of curves.

(i)

(i)

(iii)

The polygonal line defined by

t+it, t € [0,1],
z2(t) = .
t+1, te(1,2],

is a piecewise smooth curve.
The unit circle with parametrization

z(0) =€, 6 €0,2n],

is a simple closed smooth curve.
If v be the unit circle defined in (ii). Then —v can be defined by the
parametrization

z(0)=e"?  6€]o,2n],
Given m € Z\{0}, the curve defined by
z(0) = ™, 6 <0,27],

winds around the origin m times counterclockwise if m > 0. If m < 0, it winds
around the origin m times clockwise.




Definition

Let v be a smooth curve with parametrization z(t), t € [a, b]. If f
is a continuous function on an open set Q) containing -y, we define

/7 F(z)dz = /  H2(0) ().

If v is only piecewise smooth, which is smooth on intervals
[ak—1,ak], k=1,...,n, where a= a3y < a1 < ... < a, = b, then

/ f(2)dz =3 / " f(2(6) 2 (t)de.
v k=1

ak—1




Remark

The definition of integrals of functions along a curve v is
independent of the choice of the parametrization for . For

v={z==a(t):t €la b]}
and an equivalent parametrization z : [c, d] — C with
2(s) = z1(t(s)), t'(s) >0,

we have

b d
/a F(21(t))2)(t)dt = / F(21(t(5)))2L(¢())¢'(s)ds

d
/ f(z2(s))z5(s)ds.




(i) If a1, € C, then

/(qfl(z)—i—czfz(z)) dz = cl/fl(z)dz—l—cz/vfg(z)dz.

Y 0l

/_7 f(z)dz = —/Wf(z)dz.
/f(z)dz

(i)

<sup|f )| - length(~).




Without loss of generality, we assume that ~y is smooth. Part (i) follows the linearity
of the Riemann integrals. For (ii), if

y={z=z(t): t e [a, ]},

we have
b
/ f(z)dz = / f(z(a+b—39))(z(a+b—15s))ds
- 5
b
—/ f(z(a+ b—3s))Z(a+ b—s)ds
aa b
_ / F(2(£) 7 (£)dt = — / F(2(£))7 () dt
b a
= 7/ f(z)dz
For (iii),

< sup |f(z(t))] |z(t)\dt—sup|f(z)| length(7).
te(a,b]

/ f(z)dz




Example

To evaluate

[
I

where v = {z =€/’ : § € [0, 7]}, it holds

/dz / Iele'edﬁ—// do = 7i.
0 e




Example

Let v be a smooth curve with parametrization z(t), t € [a, b].
Notice that

d :
() = 22(0)2/(0),

it holds

b 1 1
zdz = z(t)Z'(t)dt = =(2(1))?| = = ((z(b))? — (2(a))?).
[ 2= [ =020 = 3= = 5 () ~ (=)




Example
Let 1 be the polygonal line starting from O to i, and then coming
from i tol -+ i, then

1 1
/(y—x—3x2i)dz:/ tidt+/ (1—t—3t%)dt
i 0 0

1

-~

Let o be the line segment from 0 to 1 + i, then

1
/ (y—x—3x2i)dz:/ (t—t—3t2i)(1+i)dt
72 0
—1-1.




