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Theorem

If f ′(z) = 0 on an open connected set Ω, then f is a constant on Ω.

Lemma

If an open set Ω is connected, then it is polygonally connected.
That is, for any z1, z2 ∈ Ω, z1 and z2 can be connected by a
polygonal line consisting of finitely many line segments in Ω.



Proof of the lemma.

If Ω = φ, then there is nothing to prove. By choosing a point
z0 ∈ Ω, we define the set

S = {z ∈ Ω : z can be connected to z0 by a polygonal line} .

Given a point z1 ∈ S , since Ω is open, there is ε1 > 0 small enough
such that Bε1(z1) ⊂ Ω. Notice that any point in Bε1(z1) can be
connected to z1 by a line segment. Thus, Bε1(z1) ⊂ S , which
implies that S is open.
Suppose that Ω\S 6= φ, say, there is z2 ∈ Ω\S . Again, we have
Bε2(z2) ⊂ S for some ε2 > 0. All point in Bε2(z2) do not belong to
S . Otherwise, z2 can be polygonally connected to z0. Thus, Ω\S
is also open, which leads a contradiction. We conclude that
Ω\S = φ, i.e., S = Ω. Therefore, for any two points w1,w2 ∈ Ω,
they can be connected by a polygonal line in Ω by combining one
polygonal line connecting z0 to w1 and another one connecting z0
to w2.



Proof of the theorem.

Let f (z) = u(x , y) + iv(x , y) for z = x + yi . Since f ′(z) = 0,

f ′(z) = ux(x , y) + ivx(x , y) = 0.

In view of the Cauchy-Riemann equations, we have

ux = uy = vx = vy = 0 on Ω.

Next, if z1, z2 ∈ Ω such that the line segment L between z1 and z2
lie in Ω, we will show that f (z) is a constant on L. L can be
parametrized by

L =
{
z1 + sw : s ∈

[
0, |z2 − z1|

]}
,

where w = w1 + w2i =
z2 − z1
|z2 − z1|

is the unit vector in the direction

from z1 to z2. Now, we consider the restriction of u on L, i.e.,
u(x1 + w1s, y1 + w2s), where z1 = x1 + y1i .



Proof of the theorem, continued.

We have

d

ds
u(x1 + w1s, y1 + w2s) = ∇u

∣∣∣
(x1+w1s,y1+w2s)

· (w1,w2),

where ∇u = (ux , uy ) is the gradient of u. Since ux = uy = 0, it
follows that

d

ds
u(x1 + w1s, y1 + w2s) = 0 on

[
0, |z2 − z1|

]
.

This gives u is a constant on L. Since there is always a finite
number of line segments connecting any two points in Ω, u is a
constant on Ω. Similarly, by applying the same arguments to v , v
is a constant on Ω. Therefore, f is a constant on Ω.



Example

Suppose that f and f are both differentiable on an open connected
set Ω, we are going to show that f must be a constant.
By writing f (z) = u(x , y) + iv(x , y), z = x + yi , we have
f (z) = u(x , y)− iv(x , y). Since f is differentiable on Ω, the
Cauchy-Riemann equations

ux = vy and uy = −vx hold on Ω.

Since f is also differentiable on Ω, the Cauchy-Riemann equations

ux = −vy and uy = vx hold on Ω.

Therefore, we have ux = uy = vx = vy = 0 on Ω, which implies
f ′(z) = 0 on Ω. Therefore, f is a constant.



Example

Suppose that f is differentiable on an open connected set Ω. If |f |
is a constant on Ω, we are going to that f must be a constant.
If |f | = 0 on Ω, then it follows that f = 0 on Ω. Now, we assume
that |f | = c 6= 0 on Ω, we have

f (z)f (z) = |f |2 = c2 6= 0.

Notice that f 6= 0 on Ω. And hence

f (z) =
c2

f (z)

is differentiable on Ω. The last example implies that f is a
constant.



Theorem

Suppost that f = u + iv is analytic on an open set Ω. Then u and v are
harmonic functions on Ω.

Proof.

To show this, we need to use the fact that if a complex function is analytic
at a point, then its real and imaginary parts have continuous partial
derivatives of all orders there. Since u and v satisfy the Cauchy-Riemann
equations, it holds that

ux = vy and uy = −vx on Ω.

Therefore,

uxx = vxy and uyy = −vxy on Ω.

We get

uxx + uyy = vxy − vxy = 0 on Ω.

That is, u is a harmonic function on Ω. The arguments for v is similar.



Definition

Let w be a complex-valued function of a real variable t, written as

w(t) = u(t) + iv(t),

for some real-valued functions u and v . The derivative of w is
defined by

d

dt
w(t) = w ′(t) = u′(t) + iv ′(t),

provided that u and v are differentiable. And the definite integral
of w over an interval [a, b] is defined by

ˆ b

a
w(t)dt =

ˆ b

a
u(t)dt + i

ˆ b

a
v(t)dt

provided the integrals on the right-hand side exist.



Example

ˆ π/4

0
e itdt =

ˆ π/4

0
(cos t + i sin t) dt

=

ˆ π/4

0
cos tdt + i

ˆ π/4

0
sin tdt

= sin t

∣∣∣∣π/4
0

+ i(− cos t)

∣∣∣∣π/4
0

=

√
2

2
+

(
1−
√

2

2

)
i .



Proposition

If w(t) = u(t) + iv(t) is a complex-valued function on [a, b], and
W ′(t) = w(t), i.e., W (t) = U(t) + iV (t) with U ′(t) = u(t),
V ′(t) = v(t), then

ˆ b

a
w(t)dt = W (b)−W (a)

Proof.

By the fundamental theorem of calculus,

ˆ b

a
u(t)dt = U(b)− U(a) and

ˆ b

a
v(t)dt = V (b)− V (a).



Example

Since

d

dt

e it

i
= e it ,

we have

ˆ π/4

0
e itdt =

e it

i

∣∣∣∣π/4
0

= −ie it
∣∣∣∣π/4
0

= −i

(√
2

2
+

√
2

2
i − 1

)

=

√
2

2
+

(
1−
√

2

2

)
i .



Definition

A (parametrized) curve γ is a set

γ = {z = z(t) = x(t) + y(t)i : t ∈ [a, b]} , (*)

where x(t) and y(t) are continuous real functions on [a, b]. γ is
called a simple curve or a Jordan curve if it does not intersect
itself, that is, z(t1) 6= z(t2) unless t1 = t2. γ is called a simple
closed curve if it does not intersect itself except for z(a) = z(b). If
x(t) and y(t) are continuously differentiable on [a, b], then γ is
called a smooth curve. γ is called a piecewise smooth curve if
there are points

a = a0 < a1 < ... < an = b,

such that x(t) and y(t) are smooth in each interval [ak−1, ak ],
k = 1, ..., n.



Remark

(i) The set defined by (*) is only a geometric object, which does
not have a direction. But if we parametrize it by the
parametrization z(t) = x(t) + y(t)i , then it is assigned a
direction.

(ii) The length of a smooth curve γ = {z = z(t) : t ∈ [a, b]} is

length(γ) =

ˆ b

a
|z ′(t)|dt.

If γ is only piecewise smooth, its length is the sum of the
lengths of its smooth parts.



Definition

Given curve γ defined in (*), we use −γ to denote the same set of
points of (*) but with reverse direction, say,

−γ = {z(a + b − t) : t ∈ [a, b]} .

Definition

Two parametrization z1(t) : [a, b]→ C and z2(t) : [c , d ]→ C are
called equivalent if there exists a continuously differentiable
bijection s 7→ t(s) from [c , d ] to [a, b] such that t ′(s) > 0 and

z2(s) = z1(t(s)).



Example

Here are some examples of curves.

(i) The polygonal line defined by

z(t) =

{
t + it, t ∈ [0, 1],

t + i , t ∈ [1, 2],

is a piecewise smooth curve.
(ii) The unit circle with parametrization

z(θ) = e iθ, θ ∈ [0, 2π],

is a simple closed smooth curve.
(iii) If γ be the unit circle defined in (ii). Then −γ can be defined by the

parametrization

z(θ) = e−iθ, θ ∈ [0, 2π],

(iv) Given m ∈ Z\{0}, the curve defined by

z(θ) = e imθ, θ ∈ [0, 2π],

winds around the origin m times counterclockwise if m > 0. If m < 0, it winds
around the origin m times clockwise.



Definition

Let γ be a smooth curve with parametrization z(t), t ∈ [a, b]. If f
is a continuous function on an open set Ω containing γ, we define

ˆ
γ
f (z)dz =

ˆ b

a
f (z(t))z ′(t)dt.

If γ is only piecewise smooth, which is smooth on intervals
[ak−1, ak ], k = 1, ..., n, where a = a0 < a1 < ... < an = b, then

ˆ
γ
f (z)dz =

n∑
k=1

ˆ ak

ak−1

f (z(t))z ′(t)dt.



Remark

The definition of integrals of functions along a curve γ is
independent of the choice of the parametrization for γ. For

γ = {z = z1(t) : t ∈ [a, b]}

and an equivalent parametrization z2 : [c , d ]→ C with

z2(s) = z1(t(s)), t ′(s) > 0,

we have

ˆ b

a
f (z1(t))z ′1(t)dt =

ˆ d

c
f (z1(t(s)))z ′1(t(s))t ′(s)ds

=

ˆ d

c
f (z2(s))z ′2(s)ds.



Proposition

(i) If c1, c2 ∈ C, then

ˆ
γ

(c1f1(z) + c2f2(z)) dz = c1

ˆ
γ
f1(z)dz + c2

ˆ
γ
f2(z)dz .

(ii)

ˆ
−γ

f (z)dz = −
ˆ
γ
f (z)dz .

(iii) ∣∣∣∣ˆ
γ
f (z)dz

∣∣∣∣ ≤ sup
z∈γ
|f (z)| · length(γ).



Proof.

Without loss of generality, we assume that γ is smooth. Part (i) follows the linearity
of the Riemann integrals. For (ii), if

γ = {z = z(t) : t ∈ [a, b]} ,

we have

ˆ
−γ

f (z)dz =

ˆ b

a
f (z(a + b − s))(z(a + b − s))′ds

= −
ˆ b

a
f (z(a + b − s))z ′(a + b − s)ds

=

ˆ a

b
f (z(t))z ′(t)dt = −

ˆ b

a
f (z(t))z ′(t)dt

= −
ˆ
γ
f (z)dz .

For (iii), ∣∣∣∣ˆ
γ
f (z)dz

∣∣∣∣ ≤ sup
t∈[a,b]

|f (z(t))|
ˆ b

a
|z ′(t)|dt = sup

z∈γ
|f (z)| · length(γ).



Example

To evaluate ˆ
γ

dz

z
,

where γ =
{
z = e iθ : θ ∈ [0, π]

}
, it holds

ˆ
γ

dz

z
=

ˆ π

0

1

e iθ
ie iθdθ = i

ˆ π

0
dθ = πi .



Example

Let γ be a smooth curve with parametrization z(t), t ∈ [a, b].
Notice that

d

dt
(z(t))2 = 2z(t)z ′(t),

it holds

ˆ
γ
zdz =

ˆ b

a
z(t)z ′(t)dt =

1

2
(z(t))2

∣∣∣∣b
a

=
1

2

(
(z(b))2 − (z(a))2

)
.



Example

Let γ1 be the polygonal line starting from 0 to i , and then coming
from i to 1 + i , then

ˆ
γ1

(
y − x − 3x2i

)
dz =

ˆ 1

0
tidt +

ˆ 1

0

(
1− t − 3t2i

)
dt

=
i

2
+

1

2
− i

=
1

2
− i

2
.

Let γ2 be the line segment from 0 to 1 + i , then

ˆ
γ2

(
y − x − 3x2i

)
dz =

ˆ 1

0

(
t − t − 3t2i

)
(1 + i)dt

= 1− i .


