MATH2230B Complex Variables with Applications

Lecturer: Chia-Yu Hsieh

Department of Mathematics The Chinese University of Hong Kong

January 25, 2021

In this example, we will check for what $c \in \mathbb{C}$, the function

$$f(z) := \begin{cases} z^c, & \text{if } z \neq 0, \\ 0, & \text{if } z = 0, \end{cases}$$

is continuous at 0. Here z^c is defined by using the following definition of the logarithm on $\mathbb{C} \setminus \{0\}$:

$$\log z = \ln |z| + i \operatorname{Arg} z.$$

For $z \neq 0$,

$$z^c = e^{c \log z} = e^{c(\ln |z| + i\theta)}.$$

where $\theta = \operatorname{Arg} z$. Suppose that $c = c_1 + c_2 i$, $c_1, c_2 \in \mathbb{R}$, then the above equality becomes

$$z^{c} = e^{(c_{1} \ln |z| - c_{2}\theta) + i(c_{1}\theta + c_{2} \ln |z|)} = |z|^{c_{1}} e^{-c_{2}\theta} e^{i(c_{1}\theta + c_{2} \ln |z|)}.$$

We divide it into three cases.

Example (continued)

(i) For $c_1 = 0$, we have

$$z^c = e^{-c_2\theta} e^{ic_2 \ln |z|}, \quad z \neq 0.$$

Taking the modulus of f,

$$|f(z)|=e^{-c_2\theta}.$$

If f is continuous at 0, then $\lim_{z\to 0} f(z) = 0$ by the definition. Equivalently, it holds $\lim_{z\to 0} |f(z)| = 0$. Now, we first approach the origin along the ray with angle 0. We have

$$|f(z)| = 1$$
 for all z with $\operatorname{Arg} z = 0$.

Similarly, we can approach the origin along the ray with angle $\pi/2$ and have

$$|f(z)| = e^{-c_2\pi/2}$$
 for all z with $\operatorname{Arg} z = \frac{\pi}{2}$.

Therefore, if $c_2 \neq 0$, |f| is not continuous at 0, which leads a contradiction. As for the case $c_1 = c_2 = 0$, we have

$$|f(z)| = 1$$
 for all $z \neq 0$.

We conclude that f is not continuous at 0 if $c_1 = 0$.

Example (continued)

(ii) For $c_1 < 0$, it holds

$$|f(z)| = |z|^{c_1} e^{-c_2\theta}$$
 for all $z \neq 0$.

In this case, for any θ fixed, since $c_1 < 0$,

 $\lim_{|z|\to 0}|f(z)|=\infty,$

which implies that f is not continuous at 0. (iii) For $c_1 > 0$, it holds

 $|f(z)| = |z|^{c_1} e^{-c_2\theta}$ for all $z \neq 0$.

In this case, for any θ fixed, since $c_1 > 0$,

 $\lim_{|z|\to 0}|f(z)|=0.$

As a consequence, f is continuous at 0 if $c_1 > 0$. In summary, f is continuous at 0 if and only if $\operatorname{Re} c > 0$.

Let f be the principal square-root function defined by

$$f(z) = \begin{cases} |z|^{1/2} e^{i\operatorname{Arg} z/2} & \text{if } z \neq 0, \\ 0 & \text{if } z = 0. \end{cases}$$

Then f is discontinuous on $S = \{z \in \mathbb{C} : \operatorname{Re} z < 0, \operatorname{Im} z = 0\}$. To see this, given a point $-R \in S$, R > 0, we can draw a circle centered at 0 with radius R. If we approach -R along the circle from above, the limit equals to $\sqrt{R}e^{i\pi/2} = \sqrt{R}i$. On the other hand, if we approach -R along the circle from below, the limit equals to $\sqrt{R}e^{-i\pi/2} = -\sqrt{R}i$. Consequently, f does not have a limit at -R, and thus is discontinuous there.

Definition

Let f be a function on an open set Ω . f is differentiable at $z_0 \in \Omega$ if the limit

$$\lim_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0}$$

exists. And the limit, if it exists, is called the derivative of f at z_0 and denoted by $f'(z_0)$. The function f is said to be differentiable on Ω if it is differentiable at every point of Ω .

Example

Let
$$f(z) = 1/z$$
 on $\mathbb{C} \setminus \{0\}$. At each $z_0 \neq 0$, we have

$$\frac{f(z) - f(z_0)}{z - z_0} = \frac{\frac{1}{z} - \frac{1}{z_0}}{z - z_0} = -\frac{1}{z_0 z}$$

Therefore,

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = -\frac{1}{z_0^2}.$$

That is, f is differentiable at $z_0 \neq 0$, and $f'(z_0) = -\frac{1}{z_0^2}$.

Let $f(z) = \overline{z}$ on \mathbb{C} . For any $z_0 \in \mathbb{C}$, we have

$$\frac{f(z)-f(z_0)}{z-z_0}=\frac{\overline{z}-\overline{z_0}}{z-z_0}=\frac{\overline{w}}{w},$$

where $w = z - z_0$. Suppose that the limit $\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$ exists, then equivalently the limit $\lim_{w \to 0} \frac{\overline{w}}{w}$ exists. It is easy to show that $\frac{\overline{w}}{w}$ does not have a limit at 0. Therefore, f is not differentiable at every $z_0 \in \mathbb{C}$.

Let f(z) = c for some $c \in \mathbb{C}$, then f is differentiable on \mathbb{C} with

$$f'(z)=0.$$

Let $g(z) = z^n$ for some $n \in \mathbb{N}$, then g is differentiable on \mathbb{C} with

$$g'(z)=nz^{n-1}.$$

Moreover, for a polynomial $P(z) = a_0 + a_1 z + ... + a_n z^n$, $a_0, a_1, ..., a_n \in \mathbb{C}$, P is differentiable on \mathbb{C} with

$$P'(z) = a_1 + 2a_2z + \dots + na_nz^{n-1}$$

Proposition

If f and g are differentiable functions on Ω , then

(i) f + g is differentiable on Ω , and (f + g)' = f' + g'.

(ii) fg is differentiable on Ω , and (fg)' = f'g + fg'.

(iii) If $g(z_0) \neq 0$ for $z_0 \in \Omega$, then f/g is differentiable at z_0 , and

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

Moreover, if $f : \Omega_1 \to \Omega_2$ and $g : \Omega_2 \to \mathbb{C}$ are differentiable, then the composition $g \circ f$ is differentiable on Ω_1 , and the chain rule holds

$$(g(f(z)))' = g'(f(z))f'(z).$$

Let $f(z) = |z|^2$ on \mathbb{C} . At each $z_0 \in \mathbb{C}$, we have

$$\frac{f(z) - f(z_0)}{z - z_0} = \frac{|z|^2 - |z_0|^2}{z - z_0}$$

By letting $w = z - z_0$,

$$|z|^2 = |w + z_0|^2 = (w + z_0)(\overline{w} + \overline{z_0}) = w\overline{w} + w\overline{z_0} + z_0\overline{w} + |z_0|^2.$$

Thus,

$$\frac{f(z) - f(z_0)}{z - z_0} = \frac{w\overline{w} + w\overline{z_0} + z_0\overline{w}}{w} = \overline{w} + \overline{z_0} + z_0\frac{\overline{w}}{w}.$$
 (*)

If $z_0 = 0$, (*) becomes

$$\frac{f(z)-f(0)}{z-0}=\overline{w},$$

which implies

$$\lim_{z\to 0}\frac{f(z)-f(0)}{z-0}=\lim_{w\to 0}\overline{w}=0.$$

Hence, f is differentiable at 0 with f'(0) = 0.

Example (continued)

But if $z_0 \neq 0$, the last term on the right-hand side of (*), i.e., $z_0 \frac{\overline{w}}{w}$, has no limit as $w \to 0$. Therefore, f is not differentiable at every $z_0 \neq 0$.

Remark

The last example illustrates the following facts.

- (i) A function can be differentiable at a point z, but nowhere else in any neighborhood of that point.
- (ii) By writing a function f in the form f(z) = u(x, y) + iv(x, y), z = x + yi, we may have u and v are both differentiable of all orders in variables (x, y) at a point (x₀, y₀), but f is not differentiable at z₀ = x₀ + y₀i.
- (iii) The continuity of a function at a point does not imply the differentiability of the function there.

Proposition

If f is differentiable at z_0 , then f is continuous at z_0 .

Proof.

$$\lim_{z \to z_0} (f(z) - f(z_0)) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \lim_{z \to z_0} (z - z_0)$$
$$= f'(z_0) \cdot 0$$
$$= 0.$$

Theorem

Let f(z) = u(x, y) + iv(x, y), z = x + yi, be defined on a neighborhood of $z_0 = x_0 + y_0i$. If f is differentiable at z_0 , then the partial derivatives of u and v exist and satisfy the Cauchy-Riemann equations

$$u_x = v_y$$
 and $u_y = -v_x$

at (x_0, y_0) . Moreover, $f'(z_0)$ can be written as

 $f'(z_0) = u_x(x_0, y_0) + iv_x(x_0, y_0).$

Proof.

Since $f'(z_0)$ exists, using the definition of $f'(z_0)$ and approaching $z_0 = x_0 + y_0 i$ by $(x_0 + h) + y_0 i$ with $h \in \mathbb{R}$,

$$f'(z_0) = \lim_{h \to 0} \frac{f((x_0 + h) + y_0 i) - f(x_0 + y_0 i)}{h}$$

=
$$\lim_{h \to 0} \left[\frac{u(x_0 + h, y_0) - u(x_0, y_0)}{h} + i \frac{v(x_0 + h, y_0) - v(x_0, y_0)}{h} \right]$$

=
$$u_x(x_0, y_0) + iv_x(x_0, y_0).$$

On the other hand, we can also approach $z_0 = x_0 + y_0 i$ by $x_0 + (y_0 + h)i$ with $h \in \mathbb{R}$, which gives

$$f'(z_0) = \lim_{h \to 0} \frac{f(x_0 + (y_0 + h)i) - f(x_0 + y_0i)}{ih}$$

=
$$\lim_{h \to 0} \left[-i \frac{u(x_0, y_0 + h) - u(x_0, y_0)}{h} + \frac{v(x_0, y_0 + h) - v(x_0, y_0)}{h} \right]$$

=
$$v_y(x_0, y_0) - iu_y(x_0, y_0).$$

Then we compete the proof by matching the real and imaginary parts of these two equalities.

We have shown that $f(z) = |z|^2$ is differentiable only at z = 0 with f'(0) = 0. Notice that f(z) = u(x, y) + iv(x, y), z = x + yi, with

$$u(x,y) = x^2 + y^2$$
 and $v(x,y) = 0$.

It holds that u and v satisfy the Cauchy-Riemann equations at (0,0). And we have

$$f'(0) = 0 = u_x(0,0) + iv_x(0,0).$$

But f cannot be differentiable at any $z \neq 0$ since u and v do not satisfy the Cauchy-Riemann equations there.

Let f(z) = u(x, y) + iv(x, y), z = x + yi, be defined by

$$F(z) = \begin{cases} \overline{z}^2/z, & \text{if } z \neq 0, \\ 0, & \text{if } z = 0, \end{cases}$$

then

$$u(x,y) = \frac{x^3 - 3xy^2}{x^2 + y^2}$$
 and $v(x,y) = \frac{-3x^2y + y^3}{x^2 + y^2}$

if $(x, y) \neq (0, 0)$. Also, u(0, 0) = v(0, 0) = 0. Notice that

$$u_{x}(0,0) = \lim_{h \to 0} \frac{u(h,0) - u(0,0)}{h} = \lim_{h \to 0} \frac{h}{h} = 1$$

and

$$v_{y}(0,0) = \lim_{h \to 0} \frac{v(0,h) - v(0,0)}{h} = \lim_{h \to 0} \frac{h}{h} = 1.$$

We have $u_x = v_y$ at (0, 0).

Example (continued)

Similarly, we have $u_y = -v_x = 0$ at (0,0). That is, the Cauchy-Riemann equations are satisfied at z = 0. In contrast, for $z \neq 0$,

$$\frac{f(z)-f(0)}{z-0} = \left(\frac{\overline{z}}{z}\right)^2$$

does not have a limit as $z \to 0$. To see this, if we approach 0 by $z = \rho e^{i\theta_0}$ for some fixed $\theta_0 \in \mathbb{R}$ and let $\rho \to 0$, we have

$$\left(\frac{\overline{z}}{z}\right)^2 = e^{-4i\theta_0}$$

We will get different limits as $\rho \rightarrow 0$ with different θ_0 's.

Theorem

Let f(z) = u(x, y) + iv(x, y), z = x + yi, be defined on an open set Ω . If u and v are continuously differentiable and satisfy the Cauchy-Riemann equations at $z_0 = x_0 + y_0i \in \Omega$, then f is differentiable at z_0 with

$$f'(z_0) = u_x(x_0, y_0) + iv_x(x_0, y_0).$$

Proof.

By the continuous differentiability of u and v,

$$u(x_0 + h_1, y_0 + h_2) - u(x_0, y_0) = u_x(x_0, y_0)h_1 + u_y(x_0, y_0)h_2 + \varphi_1(h)|h|,$$

$$v(x_0 + h_1, y_0 + h_2) - v(x_0, y_0) = v_x(x_0, y_0)h_1 + v_y(x_0, y_0)h_2 + \phi_2(h)|h|,$$

where $\varphi_1(h), \varphi_2(h) \to 0$ as $h \to 0$, $h = h_1 + h_2 i$. Then we have

$$f(z_0 + h) - f(z_0)$$

= $(u_x(x_0, y_0) + iv_x(x_0, y_0)) h_1 + (u_y(x_0, y_0) + iv_y(x_0, y_0)) h_2$
+ $(\varphi_1(h) + i\varphi_2(h)) |h|.$

Using the Cauchy-Riemann equations, the above equality becomes

$$f(z_0 + h) - f(z_0)$$

= $(u_x(x_0, y_0) + iv_x(x_0, y_0)) h_1 + (-v_x(x_0, y_0) + iu_x(x_0, y_0)) h_2$
+ $(\varphi_1(h) + i\varphi_2(h)) |h|$
= $(u_x(x_0, y_0) + iv_x(x_0, y_0)) (h_1 + h_2i) + (\varphi_1(h) + i\varphi_2(h)) |h|.$

By passing to the limit $h \rightarrow 0$, we complete the proof.

Recall the example for f(z) = u(x, y) + iv(x, y), z = x + yi, defined by

$$f(z) = \begin{cases} \overline{z}^2/z & \text{if } z \neq 0, \\ 0 & \text{if } z = 0. \end{cases}$$

Though u and v satisfy the Cauchy-Riemann equations at (x, y) = (0, 0), the partial derivatives of u and v are not continuous at (0, 0). The assumptions of the last theorem do not holds.

Consider the function $f(z) = e^z = e^x (\cos y + i \sin y)$, where z = x + yi. Then we have f(z) = u(x, y) + iv(x, y) with

$$u(x, y) = e^x \cos y$$
 and $v(x, y) = e^x \sin y$.

Notice that u and v are both continuously differentiable and satisfy

$$u_x = e^x \cos y = v_y$$
 and $u_y = -e^x \sin y = -v_x$.

for all $(x, y) \in \mathbb{R}^2$. Therefore, f is differentiable on \mathbb{C} with

$$f' = u_x + iv_x = e^x \cos y + ie^x \sin y.$$

Note that f'(z) = f(z) for all $z \in \mathbb{C}$.

Let
$$f(z) = x^3 + i(1 - y)^3$$
, $z = x + yi$. Then
 $f(z) = u(x, y) + iv(x, y)$ with
 $u(x, y) = x^3$ and $v(x, y) = (1 - y)^3$.

First, notice that u and v are continuously differentiable on \mathbb{R}^2 . As for the Cauchy-Riemann equations,

$$u_x = 3x^2, \qquad u_y = 0, \\ v_x = 0, \qquad v_y = -3(1-y)^2.$$

Then we always have $u_y = -v_x$. But $u_x = v_y$ only if (x, y) = (0, 1). Therefore, f is differentiable only at z = i with

$$f'(i) = u_x(0,1) + iv_x(0,1) = 0.$$

Let $f(z) = \sin x \cosh y + i \cos x \sinh y$, $z = x + yi \in \mathbb{C}$. Then f = u + iv with

 $u(x, y) = \sin x \cosh y$ and $v(x, y) = \cos x \sinh y$.

Since u and v are continuously differentiable and satisfy

 $u_x = \cos x \cosh y = v_y$ and $u_y = \sin x \sinh y = -v_x$

everywhere, we conclude that f is differentiable on $\mathbb C$ with

 $f'(z) = u_x + iv_x = \cos x \cosh y - i \sin x \sinh y.$