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Example

In this example, we will check for what c ∈ C, the function

f (z) :=

{
zc , if z 6= 0,

0, if z = 0,

is continuous at 0. Here zc is defined by using the following definition of
the logarithm on C\{0}:

log z = ln |z |+ iArg z .

For z 6= 0,

zc = ec log z = ec(ln |z|+iθ).

where θ = Arg z . Suppose that c = c1 + c2i , c1, c2 ∈ R, then the above
equality becomes

zc = e(c1 ln |z|−c2θ)+i(c1θ+c2 ln |z|) = |z |c1e−c2θe i(c1θ+c2 ln |z|).

We divide it into three cases.



Example (continued)

(i) For c1 = 0, we have

zc = e−c2θe ic2 ln |z|, z 6= 0.

Taking the modulus of f ,

|f (z)| = e−c2θ.

If f is continuous at 0, then limz→0 f (z) = 0 by the definition. Equivalently, it
holds limz→0 |f (z)| = 0. Now, we first approach the origin along the ray with
angle 0. We have

|f (z)| = 1 for all z with Arg z = 0.

Similarly, we can approach the origin along the ray with angle π/2 and have

|f (z)| = e−c2π/2 for all z with Arg z =
π

2
.

Therefore, if c2 6= 0, |f | is not continuous at 0, which leads a contradiction. As
for the case c1 = c2 = 0, we have

|f (z)| = 1 for all z 6= 0.

We conclude that f is not continuous at 0 if c1 = 0.



Example (continued)

(ii) For c1 < 0, it holds

|f (z)| = |z |c1e−c2θ for all z 6= 0.

In this case, for any θ fixed, since c1 < 0,

lim
|z|→0

|f (z)| =∞,

which implies that f is not continuous at 0.
(iii) For c1 > 0, it holds

|f (z)| = |z |c1e−c2θ for all z 6= 0.

In this case, for any θ fixed, since c1 > 0,

lim
|z|→0

|f (z)| = 0.

As a consequence, f is continuous at 0 if c1 > 0.

In summary, f is continuous at 0 if and only if Re c > 0.



Example

Let f be the principal square-root function defined by

f (z) =

{
|z |1/2e iArg z/2 if z 6= 0,

0 if z = 0.

Then f is discontinuous on S = {z ∈ C : Re z < 0, Im z = 0}. To
see this, given a point −R ∈ S , R > 0, we can draw a circle
centered at 0 with radius R. If we approach −R along the circle
from above, the limit equals to

√
Re iπ/2 =

√
Ri . On the other

hand, if we approach −R along the circle from below, the limit
equals to

√
Re−iπ/2 = −

√
Ri . Consequently, f does not have a

limit at −R, and thus is discontinuous there.



Definition

Let f be a function on an open set Ω. f is differentiable at z0 ∈ Ω if the limit

lim
z→z0

f (z)− f (z0)

z − z0

exists. And the limit, if it exists, is called the derivative of f at z0 and denoted by
f ′(z0). The function f is said to be differentiable on Ω if it is differentiable at every
point of Ω.

Example

Let f (z) = 1/z on C\{0}. At each z0 6= 0, we have

f (z)− f (z0)

z − z0
=

1

z
− 1

z0
z − z0

= − 1

z0z

Therefore,

lim
z→z0

f (z)− f (z0)

z − z0
= − 1

z20
.

That is, f is differentiable at z0 6= 0, and f ′(z0) = − 1

z20
.



Example

Let f (z) = z on C. For any z0 ∈ C, we have

f (z)− f (z0)

z − z0
=

z − z0
z − z0

=
w

w
,

where w = z − z0. Suppose that the limit lim
z→z0

f (z)− f (z0)

z − z0

exists, then equivalently the limit lim
w→0

w

w
exists. It is easy to show

that
w

w
does not have a limit at 0. Therefore, f is not

differentiable at every z0 ∈ C.



Example

Let f (z) = c for some c ∈ C, then f is differentiable on C with

f ′(z) = 0.

Let g(z) = zn for some n ∈ N, then g is differentiable on C with

g ′(z) = nzn−1.

Moreover, for a polynomial P(z) = a0 + a1z + ...+ anz
n,

a0, a1, ..., an ∈ C, P is differentiable on C with

P ′(z) = a1 + 2a2z + ...+ nanz
n−1.



Proposition

If f and g are differentiable functions on Ω, then

(i) f + g is differentiable on Ω, and (f + g)′ = f ′ + g ′.

(ii) fg is differentiable on Ω, and (fg)′ = f ′g + fg ′.

(iii) If g(z0) 6= 0 for z0 ∈ Ω, then f /g is differentiable at z0, and(
f

g

)′
=

f ′g − fg ′

g2

Moreover, if f : Ω1 → Ω2 and g : Ω2 → C are differentiable, then
the composition g ◦ f is differentiable on Ω1, and the chain rule
holds

(g (f (z)))′ = g ′ (f (z)) f ′(z).



Example

Let f (z) = |z |2 on C. At each z0 ∈ C, we have

f (z)− f (z0)

z − z0
=
|z |2 − |z0|2

z − z0
.

By letting w = z − z0,

|z |2 = |w + z0|2 = (w + z0)(w + z0) = ww + wz0 + z0w + |z0|2.

Thus,

f (z)− f (z0)

z − z0
=

ww + wz0 + z0w

w
= w + z0 + z0

w

w
. (*)

If z0 = 0, (*) becomes

f (z)− f (0)

z − 0
= w ,

which implies

lim
z→0

f (z)− f (0)

z − 0
= lim

w→0
w = 0.

Hence, f is differentiable at 0 with f ′(0) = 0.



Example (continued)

But if z0 6= 0, the last term on the right-hand side of (*), i.e.,

z0
w

w
, has no limit as w → 0. Therefore, f is not differentiable at

every z0 6= 0.

Remark

The last example illustrates the following facts.

(i) A function can be differentiable at a point z , but nowhere else
in any neighborhood of that point.

(ii) By writing a function f in the form f (z) = u(x , y) + iv(x , y),
z = x + yi , we may have u and v are both differentiable of all
orders in variables (x , y) at a point (x0, y0), but f is not
differentiable at z0 = x0 + y0i .

(iii) The continuity of a function at a point does not imply the
differentiability of the function there.



Proposition

If f is differentiable at z0, then f is continuous at z0.

Proof.

lim
z→z0

(f (z)− f (z0)) = lim
z→z0

f (z)− f (z0)

z − z0
lim
z→z0

(z − z0)

= f ′(z0) · 0
= 0.



Theorem

Let f (z) = u(x , y) + iv(x , y), z = x + yi , be defined on a
neighborhood of z0 = x0 + y0i . If f is differentiable at z0, then the
partial derivatives of u and v exist and satisfy the Cauchy-Riemann
equations

ux = vy and uy = −vx

at (x0, y0). Moreover, f ′(z0) can be written as

f ′(z0) = ux(x0, y0) + ivx(x0, y0).



Proof.

Since f ′(z0) exists, using the definition of f ′(z0) and approaching
z0 = x0 + y0i by (x0 + h) + y0i with h ∈ R,

f ′(z0) = lim
h→0

f ((x0 + h) + y0i)− f (x0 + y0i)

h

= lim
h→0

[
u(x0 + h, y0)− u(x0, y0)

h
+ i

v(x0 + h, y0)− v(x0, y0)

h

]
= ux(x0, y0) + ivx(x0, y0).

On the other hand, we can also approach z0 = x0 + y0i by x0 + (y0 + h)i
with h ∈ R, which gives

f ′(z0) = lim
h→0

f (x0 + (y0 + h)i)− f (x0 + y0i)

ih

= lim
h→0

[
−i u(x0, y0 + h)− u(x0, y0)

h
+

v(x0, y0 + h)− v(x0, y0)

h

]
= vy (x0, y0)− iuy (x0, y0).

Then we compete the proof by matching the real and imaginary parts of
these two equalities.



Example

We have shown that f (z) = |z |2 is differentiable only at z = 0 with
f ′(0) = 0. Notice that f (z) = u(x , y) + iv(x , y), z = x + yi , with

u(x , y) = x2 + y2 and v(x , y) = 0.

It holds that u and v satisfy the Cauchy-Riemann equations at
(0, 0). And we have

f ′(0) = 0 = ux(0, 0) + ivx(0, 0).

But f cannot be differentiable at any z 6= 0 since u and v do not
satisfy the Cauchy-Riemann equations there.



Example

Let f (z) = u(x , y) + iv(x , y), z = x + yi , be defined by

f (z) =

{
z2/z , if z 6= 0,

0, if z = 0,

then

u(x , y) =
x3 − 3xy2

x2 + y2
and v(x , y) =

−3x2y + y3

x2 + y2

if (x , y) 6= (0, 0). Also, u(0, 0) = v(0, 0) = 0. Notice that

ux(0, 0) = lim
h→0

u(h, 0)− u(0, 0)

h
= lim

h→0

h

h
= 1

and

vy (0, 0) = lim
h→0

v(0, h)− v(0, 0)

h
= lim

h→0

h

h
= 1.

We have ux = vy at (0, 0).



Example (continued)

Similarly, we have uy = −vx = 0 at (0, 0). That is, the
Cauchy-Riemann equations are satisfied at z = 0. In contrast, for
z 6= 0,

f (z)− f (0)

z − 0
=

(
z

z

)2

does not have a limit as z → 0. To see this, if we approach 0 by
z = ρe iθ0 for some fixed θ0 ∈ R and let ρ→ 0, we have(

z

z

)2

= e−4iθ0 .

We will get different limits as ρ→ 0 with different θ0’s.



Theorem

Let f (z) = u(x , y) + iv(x , y), z = x + yi , be defined on an open
set Ω. If u and v are continuously differentiable and satisfy the
Cauchy-Riemann equations at z0 = x0 + y0i ∈ Ω, then f is
differentiable at z0 with

f ′(z0) = ux(x0, y0) + ivx(x0, y0).



Proof.

By the continuous differentiability of u and v ,

u(x0 + h1, y0 + h2)− u(x0, y0) = ux(x0, y0)h1 + uy (x0, y0)h2 + ϕ1(h)|h|,
v(x0 + h1, y0 + h2)− v(x0, y0) = vx(x0, y0)h1 + vy (x0, y0)h2 + φ2(h)|h|,

where ϕ1(h), ϕ2(h)→ 0 as h→ 0, h = h1 + h2i . Then we have

f (z0 + h)− f (z0)

= (ux(x0, y0) + ivx(x0, y0)) h1 + (uy (x0, y0) + ivy (x0, y0)) h2

+ (ϕ1(h) + iϕ2(h)) |h|.

Using the Cauchy-Riemann equations, the above equality becomes

f (z0 + h)− f (z0)

= (ux(x0, y0) + ivx(x0, y0)) h1 + (−vx(x0, y0) + iux(x0, y0)) h2

+ (ϕ1(h) + iϕ2(h)) |h|
= (ux(x0, y0) + ivx(x0, y0)) (h1 + h2i) + (ϕ1(h) + iϕ2(h)) |h|.

By passing to the limit h→ 0, we complete the proof.



Example

Recall the example for f (z) = u(x , y) + iv(x , y), z = x + yi ,
defined by

f (z) =

{
z2/z if z 6= 0,

0 if z = 0.

Though u and v satisfy the Cauchy-Riemann equations at
(x , y) = (0, 0), the partial derivatives of u and v are not continuous
at (0, 0). The assumptions of the last theorem do not holds.



Example

Consider the function f (z) = ez = ex (cos y + i sin y), where
z = x + yi . Then we have f (z) = u(x , y) + iv(x , y) with

u(x , y) = ex cos y and v(x , y) = ex sin y .

Notice that u and v are both continuously differentiable and satisfy

ux = ex cos y = vy and uy = −ex sin y = −vx .

for all (x , y) ∈ R2. Therefore, f is differentiable on C with

f ′ = ux + ivx = ex cos y + iex sin y .

Note that f ′(z) = f (z) for all z ∈ C.



Example

Let f (z) = x3 + i(1− y)3, z = x + yi . Then
f (z) = u(x , y) + iv(x , y) with

u(x , y) = x3 and v(x , y) = (1− y)3.

First, notice that u and v are continuously differentiable on R2. As
for the Cauchy-Riemann equations,

ux = 3x2, uy = 0,
vx = 0, vy = −3(1− y)2.

Then we always have uy = −vx . But ux = vy only if
(x , y) = (0, 1). Therefore, f is differentiable only at z = i with

f ′(i) = ux(0, 1) + ivx(0, 1) = 0.



Example

Let f (z) = sin x cosh y + i cos x sinh y , z = x + yi ∈ C. Then
f = u + iv with

u(x , y) = sin x cosh y and v(x , y) = cos x sinh y .

Since u and v are continuously differentiable and satisfy

ux = cos x cosh y = vy and uy = sin x sinh y = −vx

everywhere, we conclude that f is differentiable on C with

f ′(z) = ux + ivx = cos x cosh y − i sin x sinh y .


