MATH2230B Complex Variables with Applications

Lecturer: Chia-Yu Hsieh

Department of Mathematics The Chinese University of Hong Kong

January 20, 2021

Definition

Given a function f defined on an open set Ω , and z_0 an accumulation point of $\Omega \setminus \{z_0\}$, we call that f has a limit w_0 at z_0 if for all $\varepsilon > 0$, there is $\delta > 0$ such that

$$|f(z) - w_0| < \varepsilon$$
 for all $z \in \Omega$, $0 < |z - z_0| < \delta$.

And we write it as

$$\lim_{z\to z_0}f(z)=w_0.$$

Example

Check that if the function

$$f(z) := z/\overline{z}, \quad z \neq 0,$$

has a limit at 0. Notice that, for $z = x + yi \neq 0$,

$$\operatorname{Re} f = \frac{x^2 - y^2}{x^2 + y^2}.$$

If we approach the origin along the real axis, for all $x \in \mathbb{R}$, we have

$$\operatorname{Re} f(x) = 1.$$

And if we approach the origin along the imaginary axis, for all $y \in \mathbb{R}$, we have

$$\operatorname{Re} f(yi) = -1.$$

Therefore, f does not have a limit at 0.

Example

Let $f(z) = 1/\log z$ be defined by using the principal branch of the logarithm on $\Omega = \{z \in \mathbb{C} : |z| > 0, -\pi < \operatorname{Arg} z < \pi\}$. To show that

$$\lim_{z\to 0}f(z)=0,$$

we recall that for $z \in \Omega$,

$$f(z) = \frac{1}{\log z} = \frac{1}{\ln |z| + i \operatorname{Arg} z}.$$

Hence,

$$|f(z)| \le \frac{1}{\sqrt{(\ln |z|)^2 + (\operatorname{Arg} z)^2}} \le -\frac{1}{\ln |z|}$$

for all $z \in \Omega$ with |z| < 1. Therefore,

 $|f(z)| < arepsilon \quad |z| < \min\left\{1, e^{-1/arepsilon}
ight\}.$

Definition

Given a function f defined on an open set $\Omega \subset \mathbb{C}$, we call that f is continuous at $z_0 \in \Omega$ if

$$\lim_{z\to z_0}f(z)=f(z_0).$$

If f is continuous at every point $z \in \Omega$, we call that f is continuous on Ω .

Proposition

If f and g are functions on an open set $\Omega \subset \mathbb{C}$ and continuous at $z_0 \in \Omega$, then f + g and fg are both continuous at z_0 . Moreover, if $g(z_0) \neq 0$, then f/g is also continuous at z_0 .

Proposition

For $f : \Omega_1 \to \Omega_2$ and $g : \Omega_2 \to \mathbb{C}$, where Ω_1 and Ω_2 are open sets in \mathbb{C} , suppose that f is continuous at $z_0 \in \Omega_1$ and that g is continuous at $f(z_0)$, then the composition $g \circ f$ is continuous at z_0 .

Example

Re z, Im z, |z| and \overline{z} are all continuous functions. If $f : \Omega \to \mathbb{C}$ is continuous on an open set $\Omega \subset \mathbb{C}$, then |f(z)| is also continuous on Ω .

Example

Define the function

$$f(z) := \begin{cases} z/\overline{z}, & \text{if } z \neq 0, \\ 0, & \text{if } z = 0. \end{cases}$$

Noticing that f does not have a limit at 0, f is not continuous at 0.