MATH2230B Complex Variables with Applications

Lecturer: Chia-Yu Hsieh

Department of Mathematics The Chinese University of Hong Kong

January 18, 2021

Example (Lines)

Given two complex numbers z_1 and z_2 , they determine a straight line L such that L passes across z_1 and z_2 . For all points on L, denoted by z, the direction from z_1 to z_2 and the direction from z_1 to z are either the same or different by π . Therefore, by polar coordinates, if $z_2 - z_1 = \rho e^{i\theta}$, then it must hold

$$z-z_1=re^{i\theta}$$
 or $z-z_1=re^{i(\theta+\pi)}$.

Here ρ and r are moduli of $z_2 - z_1$ and $z - z_1$, respectively. Therefore, we have

either
$$\frac{z-z_1}{z_2-z_1} = \frac{r}{\rho}$$
 or $\frac{z-z_1}{z_2-z_1} = -\frac{r}{\rho}$.

In either case, $\frac{z - z_1}{z_2 - z_1}$ is real, provided that z lies on the line L. The converse is also true. So in the complex theory, line L determined by z_1 and z_2 can be represented by

$$L = \left\{ z \in \mathbb{C} : \operatorname{Im}\left(\frac{z-z_1}{z_2-z_1}\right) = 0 \right\}.$$

Find all points which satisfy

$$\operatorname{Im}\left(\frac{z+1-3i}{4-i}\right)=0.$$

The condition given in this example is quite similar to the formula of lines. It is a particular case when we have

$$-z_1 = 1 - 3i$$
 and $z_2 - z_1 = 4 - i$.

That is, $z_1 = -1 + 3i$ and $z_2 = 3 + 2i$. By the discussion in the last example, the points in this example represent a line passing across -1 + 3i and 3 + 2i.

Example (Sides of a line)

Given different z_1 and z_2 in \mathbb{C} , we can determine a line L. There are two directions if a line is given. One direction is from z_1 to z_2 , while another direction is from z_2 to z_1 . The concept of side is related to the direction that we are using. If we fix a direction by starting from z_1 to z_2 , then all points on the left form the left-hand side of the line L, while all points on the right form the right-hand side of the line L. Pay attention that the left-hand side and the right-hand side depend on the direction that we are using. Suppose that the direction is given by starting from z_1 to z_2 . Then, for an arbitrary point z on the left-hand side, we can rotate $z_2 - z_1$ counterclockwise by an angle $\theta_0 \in (0, \pi)$ to the direction given by $z - z_1$. In other words,

$$z-z_1=\lambda_0(z_2-z_1)e^{i\theta_0},$$

for some $\lambda_0 > 0$ and $\theta_0 \in (0, \pi)$.

Example (Sides of a line, continued)

From the above equality, we have

$$\operatorname{Im}\left(\frac{z-z_1}{z_2-z_1}\right) = \lambda_0 \sin \theta_0 > 0.$$

Similarly, if z is on the right-hand side of L with the direction given by pointing from z_1 to z_2 , then it holds

$$\operatorname{Im}\left(\frac{z-z_1}{z_2-z_1}\right)=\lambda_0\sin\theta_0<0.$$

The above arguments and the formula of lines implies that given z_1 and z_2 , all points satisfy the formula of lines must lie on the line across z_1 and z_2 . If

$$\operatorname{Im}\left(\frac{z-z_1}{z_2-z_1}\right)>0,$$

then z lies on the left-hand side of L with the direction from z_1 to z_2 . If

$$\operatorname{Im}\left(\frac{z-z_1}{z_2-z_1}\right)<0,$$

then z lies on the right-hand side of L.

Question: Find all points satisfying

$$\operatorname{Im}\left(\frac{z+1-3i}{4-i}\right) > 0.$$

Recall that points satisfy

$$\operatorname{Im}\left(\frac{z+1-3i}{4-i}\right) = 0$$

lie on the line L across $z_1 = -1 + 3i$, $z_2 = 3 + 2i$. Therefore, those points z satisfying

$$\operatorname{Im}\left(\frac{z+1-3i}{4-i}\right) > 0.$$

must be on the left-hand side of L with the direction from z_1 to z_2 .

Example (Reflection in the real axis)

In complex theory, given a complex number z = x + yi, we have an operator to find its symmetric point with respect to the x-axis. In fact, the symmetric point of (x, y) with respect to the x-axis is (x, -y). This symmetric point corresponds to the number x - yi. In the future, we denote by $\overline{z} = x - yi$ the symmetric point of z with respect to the x-axis.

Definition (Complex conjugates)

For $z = x + yi \in \mathbb{C}$, the symmetric point of z with respect to the real axis, i.e.,

$$\overline{z} = x - yi$$
,

is called the conjugate of z.

Property

(i)
$$\overline{\overline{z}} = z$$
 and $|\overline{z}| = |z|$.
(ii) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$, $\overline{z_1 - z_2} = \overline{z_1} - \overline{z_2}$, and $\overline{z_1 \overline{z_2}} = \overline{z_1} \overline{z_2}$. If
 $z_2 \neq 0$, $\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}$.
(iii) $\operatorname{Re} z = \frac{z + \overline{z}}{2}$ and $\operatorname{Im} z = \frac{z - \overline{z}}{2i}$.
(iv) $z\overline{z} = |z|^2$.

Example (Computation of roots)

Given $z = \rho e^{i\theta}$, we can easily calculate $z^n = \rho^n e^{in\theta}$. Conversely, if we are given $a = \rho_0 e^{i\theta_0} \neq 0$, we can also find z such that $z^n = a$, $n \in \mathbb{N}$. Indeed, suppose that $z = \rho e^{i\theta}$, then $z^n = a$ can be equivalently written as

$$\rho^n e^{in\theta} = \rho_0 e^{i\theta_0}.$$

It then follows

$$ho = \sqrt[n]{
ho_0}$$
 and $e^{i\left(n heta- heta_0
ight)} = 1.$

 ρ is uniquely determined. But cosine and sine are periodic function, the second equality above can only imply

$$n\theta - \theta_0 = 2k\pi_1$$

for some $k \in \mathbb{Z}$. Therefore, θ is not uniquely determined. All z with $\rho = \rho_0^{1/n}$ and θ given by

$$\frac{\theta_0}{n}+\frac{2k\pi}{n}, \quad k\in\mathbb{Z},$$

will satisfy the equation $z^n = a$. Such z is called an n-th root of a. Notice that we can only have n different roots for a given non-zero complex number a.

For $z \in \mathbb{C}$, $n \in \mathbb{N}$, we denote $z^{1/n}$ the set of n-th roots of z. If $z = \rho e^{i\theta} \neq 0$,

$$z^{1/n} = \left\{ \sqrt[n]{\rho} e^{i\left(\frac{\theta}{n} + \frac{2k\pi}{n}\right)} : k = 0, 1, ..., n - 1 \right\}.$$

In particular, if $z = \rho e^{i\theta} \neq 0$ with $\theta \in (-\pi, \pi]$, i.e., $\theta = \operatorname{Arg} z$, then

$$\sqrt[n]{\rho}e^{i\theta/n} = \sqrt[n]{\rho}e^{i\mathrm{Arg}z/n}$$

is called the principal n-th root of z.

Remark

If
$$z = 0$$
, all the *n*-th roots are 0.

To find all of the fourth roots of -16, we have

$$-16 = 16e^{i\pi}$$
.

Therefore,

$$(-16)^{1/4} = \left\{ 2e^{i\pi/4}, 2e^{i3\pi/4}, 2e^{i5\pi/4}, 2e^{i7\pi/4} \right\}.$$

Example

To find all of the n-th roots of 1, we notice that

$$1=1e^{i\cdot 0}.$$

Therefore,

$$1^{1/n} = \left\{ e^{i(2k\pi/n)} : k = 0, 1, ..., n-1 \right\}.$$

Given a set $S \subset \mathbb{C}$, a point $z_0 \in \mathbb{C}$ is called an interior point of S if there is $r_0 > 0$ such that

$$B_{r_0}(z_0) = \{z \in \mathbb{C} : |z - z_0| < r_0\} \subset S.$$

A point $z_0 \in \mathbb{C}$ is called an exterior point of S if there is $r_1 > 0$ such that

$$B_{r_1}(z_0) = \{z \in \mathbb{C} : |z - z_0| < r_1\} \subset \mathbb{C} \setminus S.$$

A point z_0 is a boundary point of S if it is neither an interior point nor an exterior point of S. A point z_0 is an accumulation point or a limit point if for any r > 0,

$$B_r(z_0) \cap S \neq \phi.$$

Definition

For a set $S \subset \mathbb{C}$, the interior of S consists of all its interior points. We said that S is open if every point in S is an interior point.

A set S is closed if the complement $\mathbb{C}\setminus S$ is open. The closure of S is the closed set consists of all points of S and its boundary.

Remark

- (i) ϕ and \mathbb{C} are both open and closed.
- (ii) A set can be neither open nor closed. For example, the set $S = \{z \in \mathbb{C} : 1 < |z| \le 2\}$ is neither open nor closed.
- (iii) For the set S in (ii), the interior of S is $\{z \in \mathbb{C} : 1 < |z| < 2\}$, and the closure of S is $\{z \in \mathbb{C} : 1 \le |z| \le 2\}$.

A set S is bounded if there is M > 0 such that $|z| \le M$ for all $z \in S$.

Definition

If S is a bounded set, we can define the diameter of S by

$$\operatorname{diam}(S) = \sup_{z_1, z_2 \in S} |z_1 - z_2|.$$

Definition

A set S is connected if it cannot be partitioned into two part $S = S_1 \cup S_2$ for nonempty S_1, S_2 such that

 $S_1 \subset U$ and $S_2 \subset V$

where U and V are disjoint open sets.

Given a set S, we call a family of open sets $\{O_{\alpha}\}$ is an open covering of S if

$$S\subset \bigcup_{lpha} O_{lpha}.$$

Definition

A set S is called compact if every open covering of S has a finite subcovering.

Proposition

A set S is compact if and only if S is closed and bounded.

Proposition

If we have a sequence of non-empty compact sets $S_1 \supset S_2 \supset ... \supset S_n \supset ...$ with diam $(S_n) \rightarrow 0$ as $n \rightarrow \infty$, then there is a unique $z_0 \in \mathbb{C}$ such that $z_0 \in S_n$ for all $n \in \mathbb{N}$.

Let S_1 and S_2 be subsets of \mathbb{C} . A function f is defined on S_1 if for each $z \in S_1$, there is a unique complex number $f(z) \in S_2$. We write it as

$$f: S_1 \longrightarrow S_2.$$

The set S_1 is called the domain of f.

Remark

A complex function f on S can be represented as

$$f=f_1+f_2i,$$

where f_1 and f_2 are two real-valued functions defined on S.

Here are some examples of functions.

Example

$$f(z) = z^2$$
 defined on \mathbb{C} . If $z = x + yi$, then

$$f(z) = \left(x^2 - y^2\right) + 2xyi.$$

 $g(z) = |z|^2$ defined on \mathbb{C} . We have, for z = x + yi,

$$g(z)=x^2+y^2.$$

Example

For $n \in N$, given n + 1 complex numbers $a_0, a_1, ..., a_n$, then the function

$$P(z) = a_0 + a_1 z + \ldots + a_n z^n$$

is called a polynomial of degree n. P can be defined on the whole $\mathbb{C}.$

Let P(z) and Q(z) be two polynomials. The quotient P(z)/Q(z) is called a rational function and is defined at each point z with $Q(z) \neq 0$. For example, the function

$$R(z) = \frac{z^2 + 3}{z^3 + z^2 + 5z + 5} = \frac{z^2 + 3}{(z+1)(z^2+5)}$$

is defined on $\mathbb{C} \setminus \{-1, \sqrt{5}i, -\sqrt{5}i\}.$

We know that 0 is the only square root for 0. But for a complex number $z \neq 0$, the square roots of a complex number z are

$$z^{1/2} = \left\{ \sqrt{|z|} e^{i\operatorname{Arg} z/2}, -\sqrt{|z|} e^{i\operatorname{Arg} z/2} \right\},$$

which consists of two values. So $z^{1/2}$ is not a function. But if we particularly choose one of them, say, we define

$$f(z) = \begin{cases} \sqrt{|z|}e^{i\operatorname{Arg} z/2} & \text{if } z \neq 0, \\ 0 & \text{if } z = 0. \end{cases}$$

Then f is a function on \mathbb{C} . More generally, given any $\theta_0 \in \mathbb{R}$, we can define a function

$$g(z) = \begin{cases} \sqrt{|z|}e^{i\theta/2} & \text{if } z = |z|e^{i\theta} \neq 0, \quad \theta \in (\theta_0, \theta_0 + 2\pi], \\ 0 & \text{if } z = 0, \end{cases}$$

which also corresponds to a square root of z.

- (i) For $z_0 \in \mathbb{C}$, $f_1(z) := z + z_0$, which is a translation function.
- (ii) For $\theta_0 \in \mathbb{R}$, $f_2(z) := e^{i\theta_0}z$, which is a rotation function.
- (iii) For $r_0 \in \mathbb{R}$, $f_3(z) := r_0 z$, which is a scaling function.
- (iv) $f_4(z) := \overline{z}$, which corresponds to the reflection with respect to the real axis.

All of these functions are defined on \mathbb{C} .

Example

Given $c \in \mathbb{C}$, the function e^{cz} is defined on \mathbb{C} .

Example

We define the sine and the cosine for complex numbers by

$$\cos z := rac{e^{iz} + e^{-iz}}{2}$$
 and $\sin z := rac{e^{iz} - e^{-iz}}{2i}$.

Also, the hyperbolic sine and the hyperbolic cosine are defined by

$$\cosh z := \frac{e^z + e^{-z}}{2}$$
 and $\sinh z := \frac{e^z - e^{-z}}{2}$

All of these functions are defined on $\mathbb{C}.$

Example (Complex logarithm)

The motivation of the definition of the logarithm is to find the inverse of the exponential function. That is, we want to solve the equation

$$e^z = w$$

for given $w \in \mathbb{C} \setminus \{0\}$. Suppose that $w = \rho e^{i\theta}$, $\rho = |w|$, $\theta = \operatorname{Arg} w$, and z = x + yi, then the above equation becomes

$$e^{x+yi}=\rho e^{i\theta}.$$

We have,

$$e^{x}=
ho$$
 and $e^{iy}=e^{i heta},$

which gives

$$x = \ln \rho$$
 and $y = \theta + 2k\pi$, $k \in \mathbb{Z}$.

Here In denotes the logarithm for the real numbers.

Example (Complex logarithm, continued)

There is a multi-value problem. If we fix $\alpha_0 \in \mathbb{R}$, then for each $\theta \in (-\pi, \pi]$, we can determine a unique $k \in \mathbb{Z}$ such that

$$\theta + 2k\pi \in (\alpha_0, \alpha_0 + 2\pi].$$

Then we can define

 $\log z := \ln \rho + i (\theta + 2k\pi) \quad such that \quad \theta + 2k\pi \in (\alpha_0, \alpha_0 + 2\pi],$

which is a function on $\mathbb{C}\setminus\{0\}$.

Definition (Principal branch of the logarithm)

A branch of the logarithm is a continuous function f defined on an open subset U of $\mathbb{C}\backslash\{0\}$ such that

$$e^{f(z)} = z$$

for all $z \in U$. The principal branch of the logarithm is defined by

$$\log z := \ln |z| + i \operatorname{Arg} z$$

on $\{z : \mathbb{C} : |z| > 0, -\pi < \operatorname{Arg} z < \pi\}.$

Given a branch of the logarithm defined on U and a complex number c, we can define the power function z^c to be

 $z^c = e^{c \log z}.$

If the principal branch of the logarithm is used, the above definition is called the principal branch of the power function z^c .

Remark

In general, given $c \in \mathbb{C}$, z^c might not be defined at 0.

Example

By using the principal branch of the power function z^i ,

$$i^{i} = e^{i \log i} = e^{i \left(\ln 1 + \frac{\pi i}{2} \right)} = e^{-\pi/2}.$$

Given a function f defined on an open set Ω , and z_0 an accumulation point of $\Omega \setminus \{z_0\}$, we call that f has a limit w_0 at z_0 if for all $\varepsilon > 0$, there is $\delta > 0$ such that

$$|f(z) - w_0| < \varepsilon$$
 for all $z \in \Omega$, $0 < |z - z_0| < \delta$.

And we write it as

$$\lim_{z\to z_0}f(z)=w_0.$$

Proposition

(iii) If $\lim_{z \to z_0} f(z) = w_1$ and $\lim_{z \to z_0} g(z) = w_2$, then

$$\lim_{z \to z_0} (f(z) + g(z)) = w_1 + w_2$$

and

$$\lim_{z\to z_0} \left(f(z)g(z)\right) = w_1w_2.$$

If, in addition, $w_2 \neq 0$, then

$$\lim_{z\to z_0}\frac{f(z)}{g(z)}=\frac{w_1}{w_2}.$$

To show that if $f(z) = i\overline{z}/2$, then

$$\lim_{z\to 1}f(z)=\frac{i}{2}.$$

Notice that

$$\left|f(z)-\frac{i}{2}\right|=\left|\frac{i\overline{z}}{2}-\frac{i}{2}\right|=\frac{|z-1|}{2}.$$

We have

Example

For a polynomial $P(z) = a_0 + a_1z + a_2z^2 + ... + a_nz^n$ with $a_0, ..., a_n \in \mathbb{C}$, $n \in \mathbb{N}$, we have the limit

$$\lim_{z\to z_0} P(z) = a_0 + a_1 z_0 + a_2 z_0^2 + \ldots + a_n z_0^n.$$