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Example (Lines)

Given two complex numbers z1 and z2, they determine a straight line L
such that L passes across z1 and z2. For all points on L, denoted by z , the
direction from z1 to z2 and the direction from z1 to z are either the same
or different by π. Therefore, by polar coordinates, if z2 − z1 = ρe iθ, then it
must hold

z − z1 = re iθ or z − z1 = re i(θ+π).

Here ρ and r are moduli of z2 − z1 and z − z1, respectively. Therefore, we
have

either
z − z1
z2 − z1

=
r

ρ
or

z − z1
z2 − z1

= − r

ρ
.

In either case,
z − z1
z2 − z1

is real, provided that z lies on the line L. The

converse is also true. So in the complex theory, line L determined by z1
and z2 can be represented by

L =

{
z ∈ C : Im

(
z − z1
z2 − z1

)
= 0

}
.



Example

Find all points which satisfy

Im

(
z + 1− 3i

4− i

)
= 0.

The condition given in this example is quite similar to the formula
of lines. It is a particular case when we have

−z1 = 1− 3i and z2 − z1 = 4− i .

That is, z1 = −1 + 3i and z2 = 3 + 2i . By the discussion in the
last example, the points in this example represent a line passing
across −1 + 3i and 3 + 2i .



Example (Sides of a line)

Given different z1 and z2 in C, we can determine a line L. There
are two directions if a line is given. One direction is from z1 to z2,
while another direction is from z2 to z1. The concept of side is
related to the direction that we are using. If we fix a direction by
starting from z1 to z2, then all points on the left form the left-hand
side of the line L, while all points on the right form the right-hand
side of the line L. Pay attention that the left-hand side and the
right-hand side depend on the direction that we are using. Suppose
that the direction is given by starting from z1 to z2. Then, for an
arbitrary point z on the left-hand side, we can rotate z2 − z1
counterclockwise by an angle θ0 ∈ (0, π) to the direction given by
z − z1. In other words,

z − z1 = λ0(z2 − z1)e iθ0 ,

for some λ0 > 0 and θ0 ∈ (0, π).



Example (Sides of a line, continued)

From the above equality, we have

Im

(
z − z1
z2 − z1

)
= λ0 sin θ0 > 0.

Similarly, if z is on the right-hand side of L with the direction given by pointing
from z1 to z2, then it holds

Im

(
z − z1
z2 − z1

)
= λ0 sin θ0 < 0.

The above arguments and the formula of lines implies that given z1 and z2, all
points satisfy the formula of lines must lie on the line across z1 and z2. If

Im

(
z − z1
z2 − z1

)
> 0,

then z lies on the left-hand side of L with the direction from z1 to z2. If

Im

(
z − z1
z2 − z1

)
< 0,

then z lies on the right-hand side of L.



Example

Question: Find all points satisfying

Im

(
z + 1− 3i

4− i

)
> 0.

Recall that points satisfy

Im

(
z + 1− 3i

4− i

)
= 0

lie on the line L across z1 = −1 + 3i , z2 = 3 + 2i . Therefore, those
points z satisfying

Im

(
z + 1− 3i

4− i

)
> 0.

must be on the left-hand side of L with the direction from z1 to z2.



Example (Reflection in the real axis)

In complex theory, given a complex number z = x + yi , we have an
operator to find its symmetric point with respect to the x-axis. In
fact, the symmetric point of (x , y) with respect to the x-axis is
(x ,−y). This symmetric point corresponds to the number x − yi .
In the future, we denote by z = x − yi the symmetric point of z
with respect to the x-axis.

Definition (Complex conjugates)

For z = x + yi ∈ C, the symmetric point of z with respect to the
real axis, i.e.,

z = x − yi ,

is called the conjugate of z .



Property

(i) z = z and |z | = |z |.
(ii) z1 + z2 = z1 + z2, z1 − z2 = z1 − z2, and z1z2 = z1 z2. If

z2 6= 0,

(
z1
z2

)
=

z1
z2

.

(iii) Re z =
z + z

2
and Im z =

z − z

2i
.

(iv) zz = |z |2.



Example (Computation of roots)

Given z = ρe iθ, we can easily calculate zn = ρne inθ. Conversely, if we are given
a = ρ0e

iθ0 6= 0, we can also find z such that zn = a, n ∈ N. Indeed, suppose that
z = ρe iθ, then zn = a can be equivalently written as

ρne inθ = ρ0e
iθ0 .

It then follows

ρ = n
√
ρ0 and e i

(
nθ−θ0

)
= 1.

ρ is uniquely determined. But cosine and sine are periodic function, the second
equality above can only imply

nθ − θ0 = 2kπ,

for some k ∈ Z. Therefore, θ is not uniquely determined. All z with ρ = ρ
1/n
0 and θ

given by

θ0
n

+
2kπ

n
, k ∈ Z,

will satisfy the equation zn = a. Such z is called an n-th root of a. Notice that we
can only have n different roots for a given non-zero complex number a.



Definition

For z ∈ C, n ∈ N, we denote z1/n the set of n-th roots of z . If
z = ρe iθ 6= 0,

z1/n =
{

n
√
ρe i(

θ
n
+ 2kπ

n ) : k = 0, 1, ..., n − 1
}
.

In particular, if z = ρe iθ 6= 0 with θ ∈ (−π, π], i.e., θ = Arg z , then

n
√
ρe iθ/n = n

√
ρe iArgz/n

is called the principal n-th root of z .

Remark

If z = 0, all the n-th roots are 0.



Example

To find all of the fourth roots of −16, we have

−16 = 16e iπ.

Therefore,

(−16)1/4 =
{

2e iπ/4, 2e i3π/4, 2e i5π/4, 2e i7π/4
}
.

Example

To find all of the n-th roots of 1, we notice that

1 = 1e i ·0.

Therefore,

11/n =
{
e i(2kπ/n) : k = 0, 1, ..., n − 1

}
.



Definition

Given a set S ⊂ C, a point z0 ∈ C is called an interior point of S if there
is r0 > 0 such that

Br0(z0) = {z ∈ C : |z − z0| < r0} ⊂ S .

A point z0 ∈ C is called an exterior point of S if there is r1 > 0 such that

Br1(z0) = {z ∈ C : |z − z0| < r1} ⊂ C\S .

A point z0 is a boundary point of S if it is neither an interior point nor an
exterior point of S . A point z0 is an accumulation point or a limit point if
for any r > 0,

Br (z0) ∩ S 6= φ.

Definition

For a set S ⊂ C, the interior of S consists of all its interior points. We
said that S is open if every point in S is an interior point.



Definition

A set S is closed if the complement C\S is open. The closure of S
is the closed set consists of all points of S and its boundary.

Remark

(i) φ and C are both open and closed.

(ii) A set can be neither open nor closed. For example, the set
S = {z ∈ C : 1 < |z | ≤ 2} is neither open nor closed.

(iii) For the set S in (ii), the interior of S is {z ∈ C : 1 < |z | < 2},
and the closure of S is {z ∈ C : 1 ≤ |z | ≤ 2}.



Definition

A set S is bounded if there is M > 0 such that |z | ≤ M for all
z ∈ S .

Definition

If S is a bounded set, we can define the diameter of S by

diam(S) = sup
z1,z2∈S

|z1 − z2|.

Definition

A set S is connected if it cannot be partitioned into two part
S = S1 ∪ S2 for nonempty S1,S2 such that

S1 ⊂ U and S2 ⊂ V

where U and V are disjoint open sets.



Definition

Given a set S , we call a family of open sets {Oα} is an open
covering of S if

S ⊂
⋃
α

Oα.

Definition

A set S is called compact if every open covering of S has a finite
subcovering.

Proposition

A set S is compact if and only if S is closed and bounded.

Proposition

If we have a sequence of non-empty compact sets
S1 ⊃ S2 ⊃ ... ⊃ Sn ⊃ ... with diam(Sn)→ 0 as n→∞, then there
is a unique z0 ∈ C such that z0 ∈ Sn for all n ∈ N.



Definition

Let S1 and S2 be subsets of C. A function f is defined on S1 if for
each z ∈ S1, there is a unique complex number f (z) ∈ S2. We
write it as

f : S1 −→ S2.

The set S1 is called the domain of f .

Remark

A complex function f on S can be represented as

f = f1 + f2i ,

where f1 and f2 are two real-valued functions defined on S .



Here are some examples of functions.

Example

f (z) = z2 defined on C. If z = x + yi , then

f (z) =
(
x2 − y2

)
+ 2xyi .

g(z) = |z |2 defined on C. We have, for z = x + yi ,

g(z) = x2 + y2.

Example

For n ∈ N, given n + 1 complex numbers a0, a1, ..., an, then the
function

P(z) = a0 + a1z + ...+ anz
n

is called a polynomial of degree n. P can be defined on the whole
C.



Example

Let P(z) and Q(z) be two polynomials. The quotient P(z)/Q(z)
is called a rational function and is defined at each point z with
Q(z) 6= 0. For example, the function

R(z) =
z2 + 3

z3 + z2 + 5z + 5
=

z2 + 3

(z + 1)(z2 + 5)

is defined on C\
{
−1,
√

5i ,−
√

5i
}

.



Example

We know that 0 is the only square root for 0. But for a complex number
z 6= 0, the square roots of a complex number z are

z1/2 =
{√
|z |e iArg z/2,−

√
|z |e iArg z/2

}
,

which consists of two values. So z1/2 is not a function. But if we
particularly choose one of them, say, we define

f (z) =

{√
|z |e iArg z/2 if z 6= 0,

0 if z = 0.

Then f is a function on C. More generally, given any θ0 ∈ R, we can
define a function

g(z) =

{√
|z |e iθ/2 if z = |z |e iθ 6= 0, θ ∈ (θ0, θ0 + 2π],

0 if z = 0,

which also corresponds to a square root of z .



Example

(i) For z0 ∈ C, f1(z) := z + z0, which is a translation function.
(ii) For θ0 ∈ R, f2(z) := e iθ0z , which is a rotation function.
(iii) For r0 ∈ R, f3(z) := r0z , which is a scaling function.
(iv) f4(z) := z , which corresponds to the reflection with respect to the real axis.

All of these functions are defined on C.

Example

Given c ∈ C, the function ecz is defined on C.

Example

We define the sine and the cosine for complex numbers by

cos z :=
e iz + e−iz

2
and sin z :=

e iz − e−iz

2i
.

Also, the hyperbolic sine and the hyperbolic cosine are defined by

cosh z :=
ez + e−z

2
and sinh z :=

ez − e−z

2
.

All of these functions are defined on C.



Example (Complex logarithm)

The motivation of the definition of the logarithm is to find the inverse of
the exponential function. That is, we want to solve the equation

ez = w

for given w ∈ C\{0}. Suppose that w = ρe iθ, ρ = |w |, θ = Argw , and
z = x + yi , then the above equation becomes

ex+yi = ρe iθ.

We have,

ex = ρ and e iy = e iθ,

which gives

x = ln ρ and y = θ + 2kπ, k ∈ Z.

Here ln denotes the logarithm for the real numbers.



Example (Complex logarithm, continued)

There is a multi-value problem. If we fix α0 ∈ R, then for each θ ∈ (−π, π], we can
determine a unique k ∈ Z such that

θ + 2kπ ∈ (α0, α0 + 2π].

Then we can define

log z := ln ρ+ i (θ + 2kπ) such that θ + 2kπ ∈ (α0, α0 + 2π],

which is a function on C\{0}.

Definition (Principal branch of the logarithm)

A branch of the logarithm is a continuous function f defined on an open subset U
of C\{0} such that

ef (z) = z

for all z ∈ U. The principal branch of the logarithm is defined by

log z := ln |z |+ iArg z

on {z : C : |z | > 0,−π < Arg z < π}.



Example

Given a branch of the logarithm defined on U and a complex
number c , we can define the power function zc to be

zc = ec log z .

If the principal branch of the logarithm is used, the above
definition is called the principal branch of the power function zc .

Remark

In general, given c ∈ C, zc might not be defined at 0.

Example

By using the principal branch of the power function z i ,

i i = e i log i = e i(ln 1+
πi
2 ) = e−π/2.



Definition

Given a function f defined on an open set Ω, and z0 an
accumulation point of Ω\{z0}, we call that f has a limit w0 at z0
if for all ε > 0, there is δ > 0 such that

|f (z)− w0| < ε for all z ∈ Ω, 0 < |z − z0| < δ.

And we write it as

lim
z→z0

f (z) = w0.



Proposition

(i) If limz→z0 f (z) = w1 and limz→z0 f (z) = w2, then w1 = w2.
(ii) If f (z) = u(z) + iv(z), where u and v are real-valued functions, then

limz→z0 f (z) = u0 + v0i if and only if

lim
z→z0

u(z) = u0 and lim
z→z0

v(z) = v0.

(iii) If limz→z0 f (z) = w1 and limz→z0 g(z) = w2, then

lim
z→z0

(f (z) + g(z)) = w1 + w2

and

lim
z→z0

(f (z)g(z)) = w1w2.

If, in addition, w2 6= 0, then

lim
z→z0

f (z)

g(z)
=

w1

w2
.



Example

To show that if f (z) = iz/2, then

lim
z→1

f (z) =
i

2
.

Notice that ∣∣∣∣f (z)− i

2

∣∣∣∣ =

∣∣∣∣ iz2 − i

2

∣∣∣∣ =
|z − 1|

2
.

We have ∣∣∣∣f (z)− i

2

∣∣∣∣ < ε provided |z − 1| < 2ε.

Example

For a polynomial P(z) = a0 + a1z + a2z
2 + ...+ anz

n with a0, ..., an ∈ C,
n ∈ N, we have the limit

lim
z→z0

P(z) = a0 + a1z0 + a2z
2
0 + ...+ anz

n
0 .


