MATH2230B Complex Variables with Applications

Lecturer: Chia-Yu Hsieh

Department of Mathematics The Chinese University of Hong Kong

January 11, 2021

Some specific sets:

$$\mathbb{N} = \text{the set of all natural numbers} = \{1, 2, 3, ...\};$$
$$\mathbb{Z} = \text{the set of all integers} = \{..., -2, -1, 0, 1, 2, ...\};$$
$$\mathbb{Q} = \text{the set of all rational numbers} = \left\{\frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0\right\};$$

 \mathbb{R} = the set of all real numbers.

Definition

By introducing the pure imaginary number i satisfying $i^2 = -1$, the set of complex numbers \mathbb{C} is defined by

$$\mathbb{C} = \{x + yi : x, y \in \mathbb{R}\}.$$

Definition

For a complex number z = x + yi, $x, y \in \mathbb{R}$, x and y are the real and imaginary parts of z. We denote

 $\operatorname{Re} z = x$ and $\operatorname{Im} z = y$.

If Im z = 0, then z is a real number. If Re z = 0, z is called a pure imaginary number. Two complex numbers z_1 and z_2 are equal if

 $\operatorname{Re} z_1 = \operatorname{Re} z_2$ and $\operatorname{Im} z_1 = \operatorname{Im} z_2$.

Remark

For $a, b \in \mathbb{R}$, one of the following three relations holds: (i) a < b; (ii) a = b; (iii) a > b. But for complex numbers z_1 and z_2 , we do not have $z_1 > z_2$ or $z_1 < z_2$.

Definition (Addition)

For $z_1 = x_1 + y_1i$ and $z_2 = x_2 + y_2i$, $x_1, x_2, y_1, y_2 \in \mathbb{R}$, we define the sum $z_1 + z_2$ to be

$$z_1 + z_2 = (x_1 + x_2) + (y_1 + y_2)i.$$

Property

- (i) (Commutative law) $z_1 + z_2 = z_2 + z_1$ for all $z_1, z_2 \in \mathbb{C}$.
- (ii) (Associative law) $z_1 + (z_2 + z_3) = (z_1 + z_2) + z_3$ for all $z_1, z_2, z_3 \in \mathbb{C}$.
- (iii) (Summation identity) There is $0 \in \mathbb{C}$ such that z + 0 = z for all $z \in \mathbb{C}$.
- (iv) (Summation inverse) For all $z \in \mathbb{C}$, there is $-z \in \mathbb{C}$ such that z + (-z) = 0.

(i)
$$0 = 0 + 0i$$
.
(ii) For $z = x + yi$, $x, y \in \mathbb{R}$, $-z = (-x) + (-y)i$.

Definition (Subtraction)

For $z_1, z_2 \in \mathbb{C}$, we define the subtraction $z_1 - z_2$ to be

$$z_1 - z_2 = z_1 + (-z_2).$$

Formal Calculation

Assuming that the commutative law, associative law and the distributive law hold for complex numbers, for $x_1, x_2, y_1, y_2 \in \mathbb{R}$,

$$(x_1 + y_1i)(x_2 + y_2i) = x_1x_2 + x_1y_2i + x_2y_1i + y_1y_2i^2$$

= $x_1x_2 + x_1y_2i + x_2y_1i - y_1y_2$
= $(x_1x_2 - y_1y_2) + (x_1y_2 + x_2y_1)i$.

Definition (Multiplication)

For $z_1 = x_1 + y_1i$ and $z_2 = x_2 + y_2i$, $x_1, x_2, y_1, y_2 \in \mathbb{R}$, we define the product z_1z_2 to be

$$z_1z_2 = (x_1x_2 - y_1y_2) + (x_1y_2 + x_2y_1)i.$$

Property

- (i) (Commutative law) $z_1z_2 = z_2z_1$ for all $z_1, z_2 \in \mathbb{C}$.
- (ii) (Associative law) $z_1(z_2z_3) = (z_1z_2)z_3$ for all $z_1, z_2, z_3 \in \mathbb{C}$.
- (iii) (Distributive law) $z_1(z_2 + z_3) = z_1z_2 + z_1z_3$ for all $z_1, z_2, z_3 \in \mathbb{C}$.
- (iv) (Multiplication identity) There is $1 \in \mathbb{C}$ such that $z \cdot 1 = z$ for all $z \in \mathbb{C}$.
- (v) (Multiplication inverse) For all $z \in \mathbb{C} \setminus \{0\}$, there is $z^{-1} \in \mathbb{C}$ such that $zz^{-1} = 1$.

(vi) (Binomial formula) For $z_1, z_2 \in \mathbb{C} \setminus \{0\}$, $n \in \mathbb{N}$,

$$(z_1+z_2)^n = \sum_{k=0}^n \binom{n}{k} z_1^k z_2^{n-k},$$

where

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Definition (Division)

For $z_1, z_2 \in \mathbb{C}$, $z_2 \neq 0$, we define the division by

$$\frac{z_1}{z_2} = z_1 z_2^{-1}.$$

Remark

For
$$z_1,...,z_4\in\mathbb{C}$$
, $z_3
eq 0$, $z_4
eq 0$,

$$\left(\frac{z_1}{z_3}\right)\left(\frac{z_2}{z_4}\right) = \frac{z_1z_2}{z_3z_4}.$$

Example

$$\frac{4+i}{2-3i} = \frac{(4+i)(2+3i)}{(2+3i)(2-3i)} = \frac{5+14i}{13} = \frac{5}{13} + \frac{14}{13}i.$$

Definition (Euler's formula)

For $y \in \mathbb{R}$,

$$e^{yi}=\cos y+i\sin y.$$

Formal Calculation

Recall that the exponential function for real numbers admits a Taylor expansion. For $x \in \mathbb{R}$,

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

If the above expansion holds for complex numbers, particularly for pure imaginary numbers, we have

$$e^{yi} = \sum_{n=0}^{\infty} \frac{y^n i^n}{n!}.$$

Formal Calculation (continued)

Since $i^{4k} = 1$, $i^{4k+1} = i$, $i^{4k+2} = -1$, and $i^{4k+3} = -i$, for all $k \in \mathbb{N} \cup \{0\}$, we can divide the above series into four parts as follows.

$$e^{yi} = \sum_{k=0}^{\infty} \frac{y^{4k} i^{4k}}{(4k)!} + \sum_{k=0}^{\infty} \frac{y^{4k+1} i^{4k+1}}{(4k+1)!} + \sum_{k=0}^{\infty} \frac{y^{4k+2} i^{4k+2}}{(4k+2)!} + \sum_{k=0}^{\infty} \frac{y^{4k+3} i^{4k+3}}{(4k+3)!}$$
$$= \sum_{k=0}^{\infty} \frac{y^{4k}}{(4k)!} + i \sum_{k=0}^{\infty} \frac{y^{4k+1}}{(4k+1)!} - \sum_{k=0}^{\infty} \frac{y^{4k+2} i^{4k+2}}{(4k+2)!} - i \sum_{k=0}^{\infty} \frac{y^{4k+3} i^{4k+3}}{(4k+3)!}.$$

Combining the real parts and the imaginary parts together, it follows

$$e^{yi} = \left(\sum_{k=0}^{\infty} \frac{y^{4k}}{(4k)!} - \sum_{k=0}^{\infty} \frac{y^{4k+2}}{(4k+2)!}\right) + i\left(\sum_{k=0}^{\infty} \frac{y^{4k+1}}{(4k+1)!} - \sum_{k=0}^{\infty} \frac{y^{4k+3}}{(4k+3)!}\right)$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^n y^{2n}}{(2n)!} + i \sum_{n=0}^{\infty} \frac{(-1)^n y^{2n+1}}{(2n+1)!}$$
$$= \cos y + i \sin y.$$

Definition

For
$$z = x + yi$$
, $x, y \in \mathbb{R}$,
 $e^z = e^x(\cos y + i \sin y)$

Proposition

For $z_1, z_2 \in \mathbb{C}$,

$$e^{z_1+z_2}=e^{z_1}e^{z_2}$$

Remark

For $z \in \mathbb{C}$, the complex exponential function also has the Taylor expansion

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}.$$

A complex number z = x + yi, $x, y \in \mathbb{R}$, can be identified as a point (x, y) in \mathbb{R}^2 . We can interpret the algebraic manipulations of complex numbers in the following geometric way.

Addition

Given $z_1, z_2 \in \mathbb{C}$, we can construct a parallelogram with edges $\overline{0z_1}$ and $\overline{0z_2}$. Then the fourth vertex, different from 0, z_1 and z_2 , corresponds to $z_1 + z_2$.

Subtraction

 $z_1 - z_2$ denotes the vector starting from z_2 and ending at z_1 .

Polar Coordinates

For $(x, y) \in \mathbb{R}^2$, we have the polar coordinates

$$(x, y) = (\rho \cos \theta, \rho \sin \theta),$$

where $\rho = \sqrt{x^2 + y^2}$, $\theta \in \mathbb{R}$. The corresponding complex number z = x + yi can be represented as

$$z = x + yi = \rho \cos \theta + i\rho \sin \theta = \rho (\cos \theta + i \sin \theta).$$

By using Euler's formula, $\cos \theta + i \sin \theta = e^{i\theta}$, we obtain

$$z = \rho e^{i\theta}.$$

Definition

For $z = x + yi = \rho e^{i\theta} \in \mathbb{C}$, $\rho = \sqrt{x^2 + y^2}$ is called the modulus of z, denoted by |z|. That is, the modulus of z is

$$|z| = \sqrt{(\operatorname{Re} z)^2 + (\operatorname{Im} z)^2}.$$

And for $z \neq 0$, we call θ an argument of z and define $\arg z$ to be the set of all argument of z.

Example

(i)
$$|-3+2i| = \sqrt{13}$$
.
(ii) $|1+4i| = \sqrt{17}$.

- (i) Geometrically, |z| is the distance between (x, y) and the origin.
- (ii) $\operatorname{Re} z \le |\operatorname{Re} z| \le |z|$ and $\operatorname{Im} z \le |\operatorname{Im} z| \le |z|$.

(iii) For
$$z_1, z_2 \in \mathbb{C}$$
, $|z_1 z_2| = |z_1| |z_2|$. And $|z^{-1}| = |z|^{-1}$ if $z \neq 0$.
(iv) $|z^n| = |z|^n$ for $z \in \mathbb{C}$, $n \in \mathbb{N}$.

(v) For
$$z = 0$$
, θ is undefined.

(vi) For $z \neq 0$, θ is defined up to $2k\pi$, $k \in \mathbb{Z}$. If we restrict θ to be a number in $(-\pi, \pi]$, then the argument for a complex number can be uniquely determined. That is, there is a unique $\Theta \in (-\pi, \pi]$ such that $\Theta \in \arg z$. We call Θ the principal argument of z, denoted by $\operatorname{Arg} z$.

(vii) For $z \neq 0$,

$$\operatorname{arg} z = \{\operatorname{Arg} z + 2k\pi : k \in \mathbb{Z}\}.$$

Example

$$\operatorname{Arg}(-1-i) = -\frac{3\pi}{4}.$$
$$\operatorname{arg}(-1-i) = \left\{-\frac{3\pi}{4} + 2k\pi : k \in \mathbb{Z}\right\}.$$

Proposition (Triangle inequality)

For $z_1, z_2 \in \mathbb{C}$,

$$||z_1| - |z_2|| \le |z_1 + z_2| \le |z_1| + |z_2|.$$

Proof.

For the second inequality, we can construct a triangle with vertices 0, z_1 and $z_1 + z_2$. Then length of the edge between 0 and $z_1 + z_2$ if bounded by the sum of the length of the other two. The inequality then follows. As for the first inequality, we can apply the inequality we just proved to get

$$|z_1| = |(z_1 + z_2) + (-z_2)| \le |z_1 + z_2| + |-z_2| = |z_1 + z_2| + |z_2|.$$

That is,

$$|z_1| - |z_2| \le |z_1 + z_2|.$$

Interchanging the roles of z_1 and z_2 , we obtain

$$|z_2| - |z_1| \le |z_1 + z_2|.$$

The last two inequalities complete the proof.