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Some specific sets:

N = the set of all natural numbers = {1,2,3,...};
Z = the set of all integers = {..., —2,—1,0,1,2,...};

Q = the set of all rational numbers = {Z ip,qEL,qF# 0} ;

R = the set of all real numbers.

Definition

By introducing the pure imaginary number i satisfying i> = —1,
the set of complex numbers C is defined by

C={x+yi:x,y e R}.




Definition
For a complex number z = x + yi, x,y € R, x and y are the real
and imaginary parts of z. We denote

Rez=x and Imz=y.

IfImz =0, then z is a real number. If Rez =0, z is called a pure
imaginary number. Two complex numbers z; and z> are equal if

Rezz =Rez and Imz =Imz.

For a, b € R, one of the following three relations holds: (i) a < b;
(ii) a = b; (iii) a > b. But for complex numbers z; and z, we do
not have z1 > z» or z1 < z».




Definition (Addition)
For zy = x1 + y1i and zo = xo + y»i, x1, %2, 1, ¥2 € R, we define
the sum z; + z» to be

721+ 2= (x1+x2)+ (V1 + y2)i.
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Property

(i) (Commutative law) z; + zp = zo + z; for all 1,z € C.
(ii) (Associative law) z1 + (z2 + z3) = (21 + z2) + z3 for all
z1,20,23 € C.
(iii) (Summation identity) There is 0 € C such that z+ 0 = z for
all z € C.
(iv) (Summation inverse) For all z € C, there is —z € C such that
z+(—z)=0.
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(i) 0=0+0J.
(i) Forz=x+yi, x,y €R, —z=(—x)+ (—y)i.

Definition (Subtraction)
For z1,z € C, we define the subtraction z; — z, to be

71 —n=21+(—2n).

Formal Calculation
Assuming that the commutative law, associative law and the
distributive law hold for complex numbers, for x1, x2, y1, y» € R,
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O + y1i) (2 + yai) = x1x2 + x1y2i + xay1i + y1y2i?
= X1X2 + X120 + Xoy1l — y1y2
= (x1x2 — y1y2) + (x1y2 + x2y1)i.
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Definition (Multiplication)

For zy = x1 + y1i and zo = xo + yoi, x1, %2, 1, ¥2 € R, we define
the product z;z> to be

2125 = (x1x2 — y1y2) + (x1y2 + Xxoy1)i.

Property

(i) (Commutative law) z1zy = zpzy for all z1,z, € C.
(ii) (Associative law) z1(zpz3) = (z122)z3 for all z1, 2>, z3 € C.
(iii) (Distributive law) z1(zo + z3) = 2120 + z123 for all
z1,20,23 € C.
(iv) (Multiplication identity) There is 1 € C such that z-1 = z for
all z € C.

(v) (Multiplication inverse) For all z € C\{0}, there is z~! € C
such that zz71 =1,




(i) If 21,20 € C, z1zo = 0, then either zz =0 or zp = 0, or
possibly z; = zo = 0.

(i) 1=1+0i.

(i) Forz=x+yi, x,y €R, z71 = 2X 7+ 2—y 3/
x“+ys x+y

(iv) Sometimes, we denote z~1 by ~.
z

(v) Forz € C\{0}, n € N, z" is defined inductively by

k=217 fork €N,
2=




Remark
(vi) (Binomial formula) For z;,z, € C\{0}, n € N,

n . n n—
(z1+ 22) :Z (k) Zf 2k

k=0

(£) =

where




Definition (Division)
For z1,z € C, zp # 0, we define the division by
Z]_ —-1

— =2Zz1z, .
2 e
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RENEILS
Forzi,....,.z4 € C, z3 #0, z4 # 0,

4| Z2 Z122
73 z)  zmzs

Example

4+i  (4+)(2+3)) 5414 5 14

2-3 (2+3)2=3) 13 13 13"
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Definition (Euler's formula)
Fory e R,

e’ =cosy +isiny.

v
Formal Calculation

Recall that the exponential function for real numbers admits a
Taylor expansion. For x € R,

If the above expansion holds for complex numbers, particularly for
pure imaginary numbers, we have
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Formal Calculation (continued)

Since i*h =1, i*+1 =, j4k+2 = _1 and i**3 = —j, for all k € NU {0},
we can divide the above series into four parts as follows.

D Ak 20 Ak AL 00 ak424kH2 O0 ) 4k+3j4k+3
yi _
€ kz;;mk)l +Z 4k + 1)! +k§% (4k 1 2)! k;) (4k 1 3)!
o 4k 0 Akt A2 X0y Ak+3
_ Yy
_Z(4k)!+lz 4k 1 1)! Z4k+2 ’Z (4k 1 3)!
k=0 k=0 0
Combining the real parts and the imaginary parts together, it follows
i i i - f: A2 L i yAkr ~ i yH+3
= (4k)! (4k + 2)! = (4k +1)! = (4k + 3)!
_ €o ( 1) 2n+1
- (2n)! i Z 2n 1)
n=0 n=0

=cosy +isiny.




Forz=x+yi, x,y € R,

z

e? = e*(cosy + isiny).
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Proposition
For z1,z, € C,

2tz _ o7l g2

RENEILS
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For z € C, the complex exponential function also has the Taylor
expansion
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A complex number z = x + yi, x,y € R, can be identified as a
point (x,y) in R2. We can interpret the algebraic manipulations of
complex numbers in the following geometric way.

Addition

Given z;,zy € C, we can construct a parallelogram with edges 0z;
and 0zy. Then the fourth vertex, different from 0, z; and z,
corresponds to z; + z».

z) — 7o denotes the vector starting from z» and ending at z;. \




Polar Coordinates

For (x,y) € R?, we have the polar coordinates
(x,y) = (pcosb, psinf),

where p = \/x2 + y2, 6 € R. The corresponding complex number
z = x + yi can be represented as

z=x+yi=pcosf+ipsinf = p(cosf + isinf).
By using Euler’s formula, cos @ + isin = e, we obtain

z = pe'’.




Definition

Forz=x+yi = pe' € C, p=+/x2+ y? is called the modulus of
z, denoted by |z|. That is, the modulus of z is

|z| = \/(Rez + (Im z)2.

And for z #£ 0, we call 8 an argument of z and define arg z to be
the set of all argument of z.
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Example
(i) | =3+ 2i| = V13.
(i) |1+ 4i| = V1T.
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RENEILS

(i) Geometrically,

z| is the distance between (x,y) and the origin.

(i) Rez < |Rez| < |z| and Imz < |Im z| < |z|.
(iii) For z1,z0 € C, |z122| = |z1]|22|. And ‘2_1‘ =|z|7tifz#0.
(iv) |z"| = |z|" for z € C, n € N.

) Forz =0, 6 is undefined.

)

For z # 0, 0 is defined up to 2km, k € Z. If we restrict 6 to
be a number in (—m, x|, then the argument for a complex
number can be uniquely determined. That is, there is a
unique © € (—m,m| such that © € argz. We call © the
principal argument of z, denoted by Argz.

(vii) Forz #0,

argz = {Argz+2km: k € Z}.




arg(—1—1) = {—%4—2/{77 : kEZ}.

Proposition (Triangle inequality)

For z1,z € C,

|z1] = |22]| < |21 + 22| < |z1] + | 22|




Proof.

For the second inequality, we can construct a triangle with vertices
0, z1 and z; + z». Then length of the edge between 0 and z; + z
if bounded by the sum of the length of the other two. The
inequality then follows. As for the first inequality, we can apply the
inequality we just proved to get

lz1] = (21 + 22) + (—22)| < |z + 2| + | - 22| = |21 + 22| + | 2]
That is,
|z1] = |22| < |z1 + 22|
Interchanging the roles of z; and z, we obtain

22| = |z1] < |21 + 2.

The last two inequalities complete the proof. []




