
MATH2230B
Complex Variables with Applications

Lecturer: Chia-Yu Hsieh

Department of Mathematics
The Chinese University of Hong Kong

January 11, 2021



Some specific sets:

N = the set of all natural numbers = {1, 2, 3, ...};
Z = the set of all integers = {...,−2,−1, 0, 1, 2, ...};

Q = the set of all rational numbers =

{
p

q
: p, q ∈ Z, q 6= 0

}
;

R = the set of all real numbers.

Definition

By introducing the pure imaginary number i satisfying i2 = −1,
the set of complex numbers C is defined by

C = {x + yi : x , y ∈ R} .



Definition

For a complex number z = x + yi , x , y ∈ R, x and y are the real
and imaginary parts of z. We denote

Re z = x and Im z = y .

If Im z = 0, then z is a real number. If Re z = 0, z is called a pure
imaginary number. Two complex numbers z1 and z2 are equal if

Re z1 = Re z2 and Im z1 = Im z2.

Remark

For a, b ∈ R, one of the following three relations holds: (i) a < b;
(ii) a = b; (iii) a > b. But for complex numbers z1 and z2, we do
not have z1 > z2 or z1 < z2.



Definition (Addition)

For z1 = x1 + y1i and z2 = x2 + y2i , x1, x2, y1, y2 ∈ R, we define
the sum z1 + z2 to be

z1 + z2 = (x1 + x2) + (y1 + y2)i .

Property

(i) (Commutative law) z1 + z2 = z2 + z1 for all z1, z2 ∈ C.

(ii) (Associative law) z1 + (z2 + z3) = (z1 + z2) + z3 for all
z1, z2, z3 ∈ C.

(iii) (Summation identity) There is 0 ∈ C such that z + 0 = z for
all z ∈ C.

(iv) (Summation inverse) For all z ∈ C, there is −z ∈ C such that
z + (−z) = 0.



Remark

(i) 0 = 0 + 0i .

(ii) For z = x + yi , x , y ∈ R, −z = (−x) + (−y)i .

Definition (Subtraction)

For z1, z2 ∈ C, we define the subtraction z1 − z2 to be

z1 − z2 = z1 + (−z2).

Formal Calculation

Assuming that the commutative law, associative law and the
distributive law hold for complex numbers, for x1, x2, y1, y2 ∈ R,

(x1 + y1i)(x2 + y2i) = x1x2 + x1y2i + x2y1i + y1y2i
2

= x1x2 + x1y2i + x2y1i − y1y2

= (x1x2 − y1y2) + (x1y2 + x2y1)i .



Definition (Multiplication)

For z1 = x1 + y1i and z2 = x2 + y2i , x1, x2, y1, y2 ∈ R, we define
the product z1z2 to be

z1z2 = (x1x2 − y1y2) + (x1y2 + x2y1)i .

Property

(i) (Commutative law) z1z2 = z2z1 for all z1, z2 ∈ C.

(ii) (Associative law) z1(z2z3) = (z1z2)z3 for all z1, z2, z3 ∈ C.

(iii) (Distributive law) z1(z2 + z3) = z1z2 + z1z3 for all
z1, z2, z3 ∈ C.

(iv) (Multiplication identity) There is 1 ∈ C such that z · 1 = z for
all z ∈ C.

(v) (Multiplication inverse) For all z ∈ C\{0}, there is z−1 ∈ C
such that zz−1 = 1.



Remark

(i) If z1, z2 ∈ C, z1z2 = 0, then either z1 = 0 or z2 = 0, or
possibly z1 = z2 = 0.

(ii) 1 = 1 + 0i .

(iii) For z = x + yi , x , y ∈ R, z−1 =
x

x2 + y2
+

−y
x2 + y2

i .

(iv) Sometimes, we denote z−1 by
1

z
.

(v) For z ∈ C\{0}, n ∈ N, zn is defined inductively by{
zk = zk−1z for k ∈ N,
z0 = 1.



Remark

(vi) (Binomial formula) For z1, z2 ∈ C\{0}, n ∈ N,

(z1 + z2)n =
n∑

k=0

(
n
k

)
zk1 z

n−k
2 ,

where (
n
k

)
=

n!

k!(n − k)!
.



Definition (Division)

For z1, z2 ∈ C, z2 6= 0, we define the division by

z1
z2

= z1z
−1
2 .

Remark

For z1, ..., z4 ∈ C, z3 6= 0, z4 6= 0,(
z1
z3

)(
z2
z4

)
=

z1z2
z3z4

.

Example

4 + i

2− 3i
=

(4 + i)(2 + 3i)

(2 + 3i)(2− 3i)
=

5 + 14i

13
=

5

13
+

14

13
i .



Definition (Euler’s formula)

For y ∈ R,

eyi = cos y + i sin y .

Formal Calculation

Recall that the exponential function for real numbers admits a
Taylor expansion. For x ∈ R,

ex =
∞∑
n=0

xn

n!
.

If the above expansion holds for complex numbers, particularly for
pure imaginary numbers, we have

eyi =
∞∑
n=0

ynin

n!
.



Formal Calculation (continued)

Since i4k = 1, i4k+1 = i , i4k+2 = −1, and i4k+3 = −i , for all k ∈ N ∪ {0},
we can divide the above series into four parts as follows.

eyi =
∞∑
k=0

y4k i4k

(4k)!
+
∞∑
k=0

y4k+1i4k+1

(4k + 1)!
+
∞∑
k=0

y4k+2i4k+2

(4k + 2)!
+
∞∑
k=0

y4k+3i4k+3

(4k + 3)!

=
∞∑
k=0

y4k

(4k)!
+ i

∞∑
k=0

y4k+1

(4k + 1)!
−
∞∑
k=0

y4k+2

(4k + 2)!
− i

∞∑
k=0

y4k+3

(4k + 3)!
.

Combining the real parts and the imaginary parts together, it follows

eyi =

( ∞∑
k=0

y4k

(4k)!
−
∞∑
k=0

y4k+2

(4k + 2)!

)
+ i

( ∞∑
k=0

y4k+1

(4k + 1)!
−
∞∑
k=0

y4k+3

(4k + 3)!

)

=
∞∑
n=0

(−1)ny2n

(2n)!
+ i

∞∑
n=0

(−1)ny2n+1

(2n + 1)!

= cos y + i sin y .



Definition

For z = x + yi , x , y ∈ R,

ez = ex(cos y + i sin y).

Proposition

For z1, z2 ∈ C,

ez1+z2 = ez1ez2

Remark

For z ∈ C, the complex exponential function also has the Taylor
expansion

ez =
∞∑
n=0

zn

n!
.



A complex number z = x + yi , x , y ∈ R, can be identified as a
point (x , y) in R2. We can interpret the algebraic manipulations of
complex numbers in the following geometric way.

Addition

Given z1, z2 ∈ C, we can construct a parallelogram with edges 0z1
and 0z2. Then the fourth vertex, different from 0, z1 and z2,
corresponds to z1 + z2.

Subtraction

z1 − z2 denotes the vector starting from z2 and ending at z1.



Polar Coordinates

For (x , y) ∈ R2, we have the polar coordinates

(x , y) = (ρ cos θ, ρ sin θ) ,

where ρ =
√

x2 + y2, θ ∈ R. The corresponding complex number
z = x + yi can be represented as

z = x + yi = ρ cos θ + iρ sin θ = ρ (cos θ + i sin θ) .

By using Euler’s formula, cos θ + i sin θ = e iθ, we obtain

z = ρe iθ.



Definition

For z = x + yi = ρe iθ ∈ C, ρ =
√

x2 + y2 is called the modulus of
z, denoted by |z |. That is, the modulus of z is

|z | =
√

(Re z)2 + (Im z)2.

And for z 6= 0, we call θ an argument of z and define arg z to be
the set of all argument of z.

Example

(i) | − 3 + 2i | =
√

13.

(ii) |1 + 4i | =
√

17.



Remark

(i) Geometrically, |z | is the distance between (x , y) and the origin.

(ii) Re z ≤ |Re z | ≤ |z | and Im z ≤ |Im z | ≤ |z |.
(iii) For z1, z2 ∈ C, |z1z2| = |z1||z2|. And

∣∣z−1∣∣ = |z |−1 if z 6= 0.

(iv) |zn| = |z |n for z ∈ C, n ∈ N.

(v) For z = 0, θ is undefined.

(vi) For z 6= 0, θ is defined up to 2kπ, k ∈ Z. If we restrict θ to
be a number in (−π, π], then the argument for a complex
number can be uniquely determined. That is, there is a
unique Θ ∈ (−π, π] such that Θ ∈ arg z. We call Θ the
principal argument of z, denoted by Arg z.

(vii) For z 6= 0,

arg z = {Arg z + 2kπ : k ∈ Z} .



Example

Arg(−1− i) = −3π

4
.

arg(−1− i) =

{
−3π

4
+ 2kπ : k ∈ Z

}
.

Proposition (Triangle inequality)

For z1, z2 ∈ C,

||z1| − |z2|| ≤ |z1 + z2| ≤ |z1|+ |z2|.



Proof.

For the second inequality, we can construct a triangle with vertices
0, z1 and z1 + z2. Then length of the edge between 0 and z1 + z2
if bounded by the sum of the length of the other two. The
inequality then follows. As for the first inequality, we can apply the
inequality we just proved to get

|z1| = |(z1 + z2) + (−z2)| ≤ |z1 + z2|+ | − z2| = |z1 + z2|+ |z2|.

That is,

|z1| − |z2| ≤ |z1 + z2|.

Interchanging the roles of z1 and z2, we obtain

|z2| − |z1| ≤ |z1 + z2|.

The last two inequalities complete the proof.


