THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2050C Mathematical Analysis I Tutorial 7 (March 11)

Definition (Contractive Sequences). We say that a sequence (x_n) of real numbers is **contractive** if there exists a constant C, 0 < C < 1, such that

$$|x_{n+2} - x_{n+1}| \le C|x_{n+1} - x_n| \quad \text{for all } n \in \mathbb{N}.$$
 (#)

The number C is called the **constant** of the contractive sequence.

Remarks. Do not confuse (#) with the following condition:

$$|x_{n+2} - x_{n+1}| < |x_{n+1} - x_n| \quad \text{for all } n \in \mathbb{N}.$$
 (##)

For example, (\sqrt{n}) satisfies (##) but it is not contractive.

Theorem. Every contractive sequence is a Cauchy sequence, and therefore is convergent.

Example 1. (Sequence of Fibonacci Fractions) Consider the sequence of Fibonacci fractions $x_n := f_n/f_{n+1}$, where (f_n) is the Fibonacci sequence defined by $f_1 = f_2 = 1$ and $f_{n+2} := f_{n+1} + f_n$, $n \in \mathbb{N}$. Show that the sequence (x_n) converges to $1/\varphi$, where $\varphi := (1 + \sqrt{5})/2$ is the Golden Ratio.

Example 2. Let $Y = (y_n)$ be the sequence of real numbers given by

$$y_1 \coloneqq \frac{1}{1!}, \quad y_2 \coloneqq \frac{1}{1!} - \frac{1}{2!}, \quad \dots \quad y_1 \coloneqq \frac{1}{1!} - \frac{1}{2!} + \dots + \frac{(-1)^{n+1}}{n!}, \quad \dots$$

Show that $y \coloneqq \lim(y_n)$ exists and $|y_n - y| \le \frac{1}{2^{n-1}}$ for all $n \in \mathbb{N}$.

Classwork

1. Let $x_n \coloneqq \sqrt{n}$. Show that (x_n) satisfies $\lim |x_{n+1} - x_n| = 0$, but that it is not a Cauchy sequence by definition.

Solution. As (x_n) is clearly divergent, it cannot be contractive. However,

$$|x_{n+2} - x_{n+1}| = \frac{1}{\sqrt{n+2} + \sqrt{n+1}} < \frac{1}{\sqrt{n+1} + \sqrt{n}} = |x_{n+1} - x_n|.$$

2. Let (x_n) be a sequence of real numbers defined by

$$\begin{cases} x_1 = 1, & x_2 = 2, \\ x_{n+2} := \frac{1}{3}(2x_{n+1} + x_n) & \text{ for all } n \in \mathbb{N}. \end{cases}$$

Show that (x_n) is convergent and find its limit.

Solution. Note that

$$x_{n+2} - x_{n+1} = \frac{1}{3}(2x_{n+1} + x_n) - x_{n+1} = -\frac{1}{3}(x_{n+1} - x_n).$$

In particular,

$$|x_{n+2} - x_{n+1}| = \frac{1}{3}|x_{n+1} - x_n|$$
 for $n \in \mathbb{N}$,

so (x_n) is contractive, hence convergent. As

$$x_{n+2} - x_{n+1} = -\frac{1}{3}(x_{n+1} - x_n) = \dots = (-\frac{1}{3})^n(x_2 - x_1) = (-\frac{1}{3})^n.$$

we have

$$\sum_{k=0}^{n} (x_{k+2} - x_{k+1}) = \sum_{k=0}^{n} (-\frac{1}{3})^{k}$$
$$x_{n+2} - x_1 = \frac{1 - (-\frac{1}{3})^{n+1}}{1 - (-\frac{1}{3})}$$

Hence $\lim(x_n) = \lim \left(1 + \frac{3}{4}\left(1 - \left(-\frac{1}{3}\right)^{n+1}\right)\right) = \frac{7}{4}.$

3. If $x_1 > 0$ and $x_{n+1} \coloneqq (2+x_n)^{-1}$ for $n \ge 1$, show that (x_n) is a convergent sequence. Find the limit.

Solution. By induction, it is easy to see that

$$0 \le x_n \le \frac{1}{2} \quad \text{for } n \ge 2.$$

And so

$$\frac{2}{5} \le \frac{1}{2+x_n} \le \frac{1}{2}$$
 for $n \ge 2$.

Now, for $n \ge 2$,

$$|x_{n+2} - x_{n+1}| = \frac{1}{(2+x_n)(2+x_{n+1})}|x_{n+1} - x_n| \le \frac{1}{4}|x_{n+1} - x_n|.$$

So, the 1-tail of (x_n) is contractive, hence convergent. Thus (x_n) is also convergent. Suppose $x = \lim(x_n)$. Then we have $x = \frac{1}{2+x}$, so that $x^2 + 2x - 1 = 0$. Solving the equation, we obtain $x = -1 + \sqrt{2}$ as the other root $-1 - \sqrt{2}$ is rejected.