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Solution to Problem Set 8

3.5-2(b)
Denote z,, = 1 + % 4 .-+ 4+ L. Given £ > 0, we can find N € N satisfying

n!-

2N%1 < ¢ by Archimedean Property. If n > N, 27%1 < 2N%1 <e. Foralln> N
and Vk € N, we have
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which verifies the condition of Cauchy sequence.

3.5-5

We have
n+l—n 1
Vit 14yn =~ 2yn

Since for any € > 0, we can find K € N such that K > é by Archimedean
Property. So for n > K, we have 2,41 — @p| < %, which implies
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lim |21 — xp| =0

But (z,) is not a Cauchy sequence since, for a special ¢ = 1 and any N € N,
we can always choose n = N, k = 3N. In this case, we have

|x71+k—zn\:v4]\77\/ﬁ:\/ﬁ21:5

which shows () is not Cauchy.

3.5-11

Let’s show (y,,) is a contractive sequence. For n > 1, we have
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Hence (y,,) is a contractive sequence and the limit exists.
For the value of lim(y, ), we note
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By taking n — oo at left hand side of equation, we have
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