THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2050B Mathematical Analysis I Tutorial 9 (November 11, 13)

1 Continuous Functions

Definition. Let $A \subseteq \mathbb{R}$, let $f : A \to \mathbb{R}$ and let $c \in A$.

- We say that f is continuous at c if, given any $\varepsilon > 0$, there exists $\delta > 0$ such that for all $x \in A$ satisfying $|x c| < \delta$, then $|f(x) f(c)| < \delta$.
- Let B ⊆ A. We say that f is continuous on B if f is continuous at every point of B.

Remarks. (1) We do not assume that c is a cluster point of $A \ (c \in A^c)$.

- Case 1: If $c \in A^c$, then f is continuous at $c \iff \lim_{x \to c} f = f(c)$.
- Case 2: If $c \notin A^c$, then $V_{\delta}(c) \cap A = \{c\}$ for some $\delta > 0$, so that f is automatically continuous at c.
- (2) "f is continuous on B" and " $f|_B$ is continuous" are different.

Suppose $A \subseteq \mathbb{R}$, $f : A \to \mathbb{R}$ and $c \in A$.

Sequential Criterion for Continuity. f is continuous at c if and only if for every sequence (x_n) in A that converges to c, the sequence $(f(x_n))$ converges to f(c).

Discontinuity Criterion. f is discontinuous at c if and only if there is a sequence (x_n) in A that converges to c but the sequence $(f(x_n))$ does not converge to f(c).

Example 1. Determine the points of continuity of the function $f(x) := [1/x], x \neq 0$. Here $[\cdot]$ is the greatest integer function defined by

$$[x] := \sup\{n \in \mathbb{Z} : n \le x\}.$$

Example 2. Give an example for each of the following:

- (a) $f : \mathbb{R} \to \mathbb{R}$ is continuous everywhere except at one point.
- (b) $f : \mathbb{R} \to \mathbb{R}$ is discontinuous everywhere.
- (c) $f : \mathbb{R} \to \mathbb{R}$ is continuous exactly at one point.
- (d) $f : \mathbb{R} \to \mathbb{R}$ is continuous on $\mathbb{R} \setminus \mathbb{Q}$ but distontinuous on \mathbb{Q} .

Example 3. Let $(r_j)_{j\geq 1}$ be an enumeration of all rational numbers in \mathbb{R} . Define the function φ to be

$$\varphi(x) = \sum_{\{j: r_j < x\}} \frac{1}{2^j}, \quad x \in \mathbb{R}.$$

Show that

- (a) φ is strictly increasing.
- (b) φ is discontinuous at every rational numbers.
- (c) φ is continuous at every irrational numbers.

Solution. If y > x, then

$$\varphi(y) = \sum_{r_j < y} \frac{1}{2^j} = \sum_{r_j < x} \frac{1}{2^j} + \sum_{x \le r_j < y} \frac{1}{2^j} = \varphi(x) + \sum_{x \le r_j < y} \frac{1}{2^j} \ge \varphi(x).$$

Hence φ is increasing.

Next we show that φ is discontinuous at rational points. Let x be a rational number, say r_k . Then, for y > x,

$$\varphi(y) - \varphi(x) = \sum_{x \le r_j < y} \frac{1}{2^j} \ge \frac{1}{2^k},$$

which is a constant independent of y. Hence φ is discontinuous at x.

Finally we show that φ is continuous at irrational points. Let x be an irrational number. Let $\varepsilon > 0$. Choose $N \in \mathbb{N}$ such that $1/2^N < \varepsilon$.

Since $S_N := \{r_j : 1 \le j \le N\}$ is finite and $x \notin S_N$, we can find $\delta := \delta_N > 0$ such that

$$(x-\delta, x+\delta)\cap S_N=\emptyset.$$

Now, if $|y - x| < \delta$, then

$$\begin{aligned} |\varphi(y) - \varphi(x)| &= \left| \sum_{\substack{r_j < y}} \frac{1}{2^j} - \sum_{\substack{r_j < x}} \frac{1}{2^j} \right| \\ &\leq \sum_{\substack{r_j \in (x - \delta, x + \delta) \\ j > N}} \frac{1}{2^j} \\ &\leq \sum_{\substack{r_j \in (x - \delta, x + \delta) \\ j > N}} \frac{1}{2^j} \\ &\leq \sum_{\substack{j > N}} \frac{1}{2^j} \\ &= \frac{1}{2^N} < \varepsilon. \end{aligned}$$

Therefore, φ is continuous at x.

Example 4. Is there a function $f : \mathbb{R} \to \mathbb{R}$ that is continuous on \mathbb{Q} but distortinuous on $\mathbb{R} \setminus \mathbb{Q}$?