THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2050B Mathematical Analysis I Tutorial 8 (November 4, 6)

The following problems were discussed in the tutorial this week:

Example 1. Use ε - δ definition to check that

- (a) $\lim_{x \to 0} \cos\left(\frac{1}{x}\right)$ does not exist;
- (b) $\lim_{x \to \infty} (-x^2 + \sin x) = -\infty$

Example 2. By ε - δ definition, show that $\lim_{x\to 2} \frac{x^2+1}{x^2-3} = 5$.

Example 3. Let $D \subseteq \mathbb{R}$, $x_0 \in D^c$ and $f_i: D \to \mathbb{R}$ (i = 1, 2) be such that $f_2(x) \neq 0$ for all $x \in D$. Suppose $\lim_{x \to x_0} f_i(x) = \ell_i$ (i = 1, 2) with $\ell_2 = 0$ and $\ell_1 \neq 0$. Show that, by definition,

- (a) $\exists m \in (0, \infty)$ and $\delta_0 > 0$ such that $|f(x)| \ge m \ \forall x \in V_{\delta_0}(x_0) \cap (D \setminus \{x_0\});$
- (b) $\lim_{x \to x_0} \frac{|f_1(x)|}{|f_2(x)|} = +\infty.$

Example 4. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x+2 & \text{if } x \in \mathbb{Q} \\ 3x-1 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$ Exactly at what c does $\lim_{x \to c} f(x)$ exist? And what is the limit then?

Example 5. Prove that if $f \colon \mathbb{R} \to \mathbb{R}$ is periodic and $\lim_{x \to \infty} f(x) = 0$, then f is identically zero.