THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2050B Mathematical Analysis I Tutorial 5 (October 14, 16)

1 The Cauchy Criterion

Definition. A sequence $X = (x_n)$ of real numbers is said to be a **Cauchy sequence** if for any $\varepsilon > 0$ there exists a natural number K such that

$$
|x_n - x_m| < \varepsilon \qquad \text{whenever } m, n \ge K.
$$

Example 1. Use the definition to determine whether the following sequences are Cauchy.

$$
y_n := 1 + \frac{1}{2} + \cdots + \frac{1}{n}.
$$

Cauchy Convergence Criterion. A sequence of real numbers is convergent if and only if it is a Cauchy sequence.

Definition. A sequence (x_n) of real numbers is said to be **contractive** if there exists a constant r, $0 < r < 1$, such that

$$
|x_{n+2} - x_{n+1}| \le r|x_{n+1} - x_n| \qquad \text{for all } n \in \mathbb{N}.
$$
 (#)

The number r is called the **constant** of the contractive sequence.

Remarks. Do not confuse $(\#)$ with the following condition:

$$
|x_{n+2} - x_{n+1}| < |x_{n+1} - x_n| \qquad \text{for all } n \in \mathbb{N}.\tag{##}
$$

For example, (\sqrt{n}) satisfies $(\#\#)$ but it is not contractive.

Theorem 1. Every contractive sequence is a Cauchy sequence, and therefore is convergent.

Example 2. (Sequence of Fibonacci Fractions) Consider the sequence of Fibonacci fractions $x_n := f_n/f_{n+1}$, where (f_n) is the Fibonacci sequence defined by $f_1 = f_2 = 1$ and $f_{n+2} := f_{n+1} + f_n$, $n \in \mathbb{N}$. Show that the sequence (x_n) converges to $1/\varphi$, where and $J_{n+2} := J_{n+1} + J_n$, $n \in \mathbb{N}$. Sho
 $\varphi := (1 + \sqrt{5})/2$ is the Golden Ratio.

Example 3. Let (x_n) be a sequence of real numbers defined by

$$
\begin{cases} x_1 = 1, & x_2 = 2, \\ x_{n+2} := \frac{1}{3} (2x_{n+1} + x_n) & \text{for all } n \in \mathbb{N}. \end{cases}
$$

Show that (x_n) is convergent and find its limit.

(**Hint:** Note that $x_{n+2} - x_{n+1} = \left(-\frac{1}{3}\right)$ $(\frac{1}{3})(x_{n+1} - x_n)$ and $x_{n+2} - x_1 = \sum_{n=1}^{n+1}$ $k=1$ $(x_{k+1} - x_k).$ Solution. Note that

$$
x_{n+2} - x_{n+1} = \frac{1}{3}(2x_{n+1} + x_n) - x_{n+1} = -\frac{1}{3}(x_{n+1} - x_n).
$$

In particular,

$$
|x_{n+2} - x_{n+1}| = \frac{1}{3}|x_{n+1} - x_n| \quad \text{for } n \in \mathbb{N},
$$

so (x_n) is contractive, hence convergent. As

$$
x_{n+2} - x_{n+1} = -\frac{1}{3}(x_{n+1} - x_n) = \dots = (-\frac{1}{3})^n(x_2 - x_1) = (-\frac{1}{3})^n.
$$

we have

$$
\sum_{k=0}^{n} (x_{k+2} - x_{k+1}) = \sum_{k=0}^{n} (-\frac{1}{3})^k
$$

$$
x_{n+2} - x_1 = \frac{1 - (-\frac{1}{3})^{n+1}}{1 - (-\frac{1}{3})}.
$$

. The contract of the contract of $\mathbf 1$

Hence $\lim(x_n) = \lim \left(1 + \frac{3}{4}(1 - \left(-\frac{1}{3}\right))\right)$ $(\frac{1}{3})^{n+1})$ = $\frac{7}{4}$ 4

2 Infinite Series

Definition. Let (x_n) be a sequence in R. We say that the series $\sum_{n=1}^{\infty}$ $n=1$ x_n is convergent if the sequence of partial sums (s_n) :

$$
s_n \coloneqq x_1 + x_2 + \dots + x_n
$$

is convergent.

We say that $\sum_{n=1}^{\infty}$ $n=1$ x_n is absolutely convergent if $\sum_{n=1}^{\infty}$ $n=1$ $|x_n|$ is convergent.

The *n*th term test. If the series $\sum_{n=1}^{\infty} x_n$ converges, then $\lim(x_n) = 0$.

Example 4. Let (x_n) be a sequence in R. Set

$$
r \coloneqq \limsup |x_n|^{1/n}.
$$

Show that

- (a) If $r < 1$, then $\sum_{n=1}^{\infty} x_n$ is absolutely convergent, hence convergent.
- (b) If $r > 1$, then $\sum_{n=1}^{\infty} x_n$ is divergent.

Solution. (a) Let $\alpha \in (r, 1)$. Then there is $N \in \mathbb{N}$ such that for $n \geq N$, we have $|x_n|^{1/n} < \alpha$ and hence $|x_n| < \alpha^n$. Thus, for $m > n \ge N$, we have

$$
\left|\sum_{k=1}^{m} |x_k| - \sum_{k=1}^{n} |x_k|\right| \le |x_{n+1}| + \dots + |x_m| \le \alpha^{n+1} + \dots + \alpha^m \le \frac{\alpha^{n+1}}{1-\alpha}.
$$

Since $\lim_n \alpha^n = 0$, $(\sum_{k=1}^n |x_k|)$ is Cauchy and hence convergent. Therefore $\sum_{n=1}^{\infty} x_n$ is absolutely convergent.

(b) Let $\alpha \in (1, r)$. Then for all $n \in \mathbb{N}$, there is $m \geq n$ such that $|x_m|^{1/m} > \alpha$, so that $|x_m| > \alpha^m \ge 1$. By the *n*th term test, $\sum_{n=1}^{\infty} x_n$ is divergent.

 \blacktriangleleft