THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2050B Mathematical Analysis I Tutorial 11 (November 25, 27)

Definition. Let $A \subseteq \mathbb{R}$ and let $f : A \to \mathbb{R}$. If there exists a constant K > 0 such that

$$|f(x) - f(u)| \le K|x - u| \qquad \text{for all } x, u \in A,\tag{(*)}$$

then f is said to be a Lipschitz function (or to satisfy a Lipschitz condition) on A.

Remarks. When A is an interval I, the condition (*) means that the slopes of all line segments joining two points on the graph of y = f(x) over I are bounded by some number K.

Theorem. If $f: A \to \mathbb{R}$ is a Lipschitz function, then f is uniformly continuous on A.

- **Example 1.** (a) $f(x) \coloneqq x^2$ is a Lipschitz function on [0, b], b > 0, but does not satisfy a Lipschitz condition on $[0, \infty)$.
- (b) $g(x) \coloneqq \sqrt{x}$ is uniformly continuous on $[a, \infty)$, a > 0, but not a Lipschitz function on $[0, \infty)$.

Example 2. Let A be a nonempty subset of \mathbb{R} . For $x \in \mathbb{R}$, define

$$\rho_A(x) = \inf\{|x - y| : y \in A\}.$$

(a) Show that ρ_A is Lipschitz on A, hence uniformly continuous on A.

(b) Show that $\rho_A(x) = 0$ if and only if $x \in \overline{A}$.

Example 3. Let f and g be uniformly continuous on $A \subseteq \mathbb{R}$.

- (a) Is fg uniformly continuous on A?
- (b) If f, g are both bounded on A, show that fg is uniformly continuous on A.
- (c) If A = (0, 1), show that fg uniformly continuous on A.