THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2050B Mathematical Analysis I Tutorial 10 (November 18, 20)

1 Uniform Continuity

Definition. Let $A \subseteq \mathbb{R}$ and let $f : A \to \mathbb{R}$. We say that f is **uniformly continuous** on A if for each $\varepsilon > 0$ there is a $\delta(\varepsilon) > 0$ such that if $x, u \in A$ satisfy $|x - u| < \delta(\varepsilon)$, then $|f(x) - f(u)| < \varepsilon$.

Nonuniform Continuity Criteria. Let $A \subseteq \mathbb{R}$ and let $f : A \to \mathbb{R}$. Then the following statements are equivalent:

- (i) f is not uniformly continuous on A.
- (ii) There exists an $\varepsilon_0 > 0$ such that for every $\delta > 0$ there are points x_{δ}, u_{δ} in A such that $|x_{\delta} u_{\delta}| < \delta$ and $|f(x_{\delta}) f(u_{\delta})| \ge \varepsilon_0$.
- (iii) There exists an $\varepsilon_0 > 0$ and two sequences (x_n) and (u_n) in A such that $\lim(x_n u_n) = 0$ but $|f(x_n) f(u_n)| \ge \varepsilon_0$ for all $n \in \mathbb{N}$.

Uniform Continuity Theorem. Let I be a closed bounded interval and let $f : I \to \mathbb{R}$ be continuous on I. Then f is uniformly continuous on I.

Example 1. Determine whether the following functions are uniformly continuous:

- (a) $f: [0, \infty) \to \mathbb{R}$ defined by $f(x) = \sqrt{x}$,
- (b) $g : \mathbb{R} \to \mathbb{R}$ defined yby $g(x) = \cos(x^2)$.

Solution. (a) Note that for any $x, y \in [0, \infty)$,

$$|f(x) - f(y)|^2 = |\sqrt{x} - \sqrt{y}|^2$$

$$\leq |\sqrt{x} - \sqrt{y}||\sqrt{x} + \sqrt{y}|$$

$$= |x - y|.$$

Let $\varepsilon > 0$. Take $\delta = \varepsilon^2$. Now, if $x, y \in [0, \infty)$ and $|x - y| < \delta$, then

$$|f(x) - f(y)| \le \sqrt{|x - y|} < \sqrt{\delta} = \varepsilon.$$

Hence f is uniformly continuous on $[0, \infty)$.

(b) Let $x_n = \sqrt{2n\pi + \frac{\pi}{2}}$ and $y_n = \sqrt{2n\pi}$ for $n \ge 1$. Then

$$|x_n - y_n| = \sqrt{2n\pi + \frac{\pi}{2}} - \sqrt{2n\pi} = \frac{\frac{\pi}{2}}{\sqrt{2n\pi + \frac{\pi}{2}} + \sqrt{2n\pi}} \to 0 \quad \text{as } n \to \infty.$$

However, for all $n \in \mathbb{N}$,

$$|g(x_n) - g(y_n)| = |\cos(2n\pi + \frac{\pi}{2}) - \sin(2n\pi)| = |0 - 1| = 1.$$

By Nonuniform Continuity Criteria, g is not uniformly continuous on \mathbb{R} .

Example 2. Let $f : \mathbb{R} \to \mathbb{R}$ be a uniformly continuous function on \mathbb{R} with f(0) = 0. Prove that there exists some C > 0 such that

$$|f(x)| \le 1 + C|x|$$
 for all $x \in \mathbb{R}$.

Solution. Let $\varepsilon_0 := 1$. Since f is uniformly continuous on \mathbb{R} , there exists $\delta > 0$ such that

$$|f(u) - f(v)| < \varepsilon_0 = 1$$
 whenever $|u - v| < \delta$.

Let $x \in \mathbb{R}$. Choose $N \in \mathbb{N}$ such that $N - 1 \leq |x|/\delta < N$. Now

$$\begin{split} |f(x)| &= |f(x) - f(0)| + |f(0)| \\ &\leq \sum_{n=1}^{N} |f(n \cdot \frac{x}{N}) - f((n-1) \cdot \frac{x}{N})| + 0 \\ &\leq N \\ &= 1 + (N-1) \\ &\leq 1 + \frac{1}{\delta} |x|. \end{split}$$

Example 3. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. Suppose $\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = \ell \in \mathbb{R}$. Show that f is uniformly continuous on \mathbb{R} .

Example 4. A function $f : \mathbb{R} \to \mathbb{R}$ is said to be periodic on \mathbb{R} if there exists a number p > 0 such that f(x + p) = f(x) for all $x \in \mathbb{R}$. Prove that a continuous periodic function on \mathbb{R} is uniformly continuous on \mathbb{R} .