MATH2050B 2021 HW 6

TA's solutions^{[1](#page-0-0)} to selected problems

Q1. Show that for $\emptyset \neq A \subset \mathbb{R}$ and $c \in \mathbb{R}$ that

- (i) $c \in A^c$ if and only if each neighborhood of c intersect $A \setminus \{c\}.$
- (ii) Let $c \in [-\infty, \infty]$, and let U_1, \ldots, U_n be neighborhoods of c. Then $\bigcap_{i=1}^n U_i$ is a neighborhood of c.
- (iii) (ii) is not true for infinitely many neighborhoods.

Solution. (i): is due to definition, see Q3 of HW5.

(ii): **Case 1.** $c \in \mathbb{R}$. Then for each $i = 1, 2, ..., n$ there exists $r_i > 0$ such that $V_{r_i}(c) \subset U_i$. Take $r = \min(r_1, r_2, \ldots, r_n) > 0$. Then $V_r(c) \subset U_i$ for all i.

Case 2. $c = \infty$. Then for each i there exists $r_i \in \mathbb{R}$ such that $V_{r_i}(\infty) \subset U_i$. Take $r =$ $\max(r_1, \ldots, r_n)$. Hence $V_r(\infty) \subset U_i$ for all i.

Case 3. $c = -\infty$. Then for each i there exists $r_i \in \mathbb{R}$ such that $V_{r_i}(-\infty) \subset U_i$. Take $r = \min(r_1, \ldots, r_n)$. Hence $V_r(-\infty) \subset U_i$ for all i.

(iii): Consider $c = 0$ and $U_n = \left(-\frac{1}{n}\right)$ $\frac{1}{n}, \frac{1}{n}$ $\frac{1}{n}$, then $\cap_n U_n = \{0\}$ is not an open neighborhood of 0.

Q2. Let $f : A \to \mathbb{R}$ and $c \in A^c \subset [-\infty, \infty]$ and and $\ell \in [-\infty, \infty]$. Show that the definitions(given in Bartle, Lectures, Tutorials) for $\lim_{x \to c} f(x)$ are consistent with the following: $\lim_{x\to c} f(x) = \ell$ iff for any neighborhood U of ℓ , there exists neighborhood W of c such that the image

$$
\{f(w) : w \in W \cap (A \setminus \{c\})\} \subset U
$$

Solution. (\Rightarrow) **Case 1.** $\ell \in \mathbb{R}$. Suppose $\lim_{x \in A} f(x) = \ell$, i.e. for every $\epsilon > 0$ there exists $\delta > 0$ such that for all $x \in A$ with $0 < |x - c| < \delta$ we have $|f(x) - \ell| < \epsilon$. Let U be a neighborhood of ℓ . Then there exists $\epsilon > 0$ such that $V_{\epsilon}(\ell) \subset U$. Let $\delta > 0$ be chosen as in the above, and $W = V_\delta(c)$. Then $f(W \cap (A \setminus \{c\})) \subset U$ because for all $x \in W \cap (A \setminus \{c\})$, by definition $x \in A$ and $0 < |x - c| < \delta$.

Case 2. $\ell = \infty$. Let U be a neighborhood of ℓ . Then there exists M such that $V_M(\infty) \subset U$. By definition, there exists l such that for all $x > l$, $f(x) > M$. Take $W = V_l(\infty)$, then $f(W \cap A) \subset V_M(\infty) \subset U$. The case for $\ell = -\infty$ is similar.

(∈) Case 1. $\ell \in \mathbb{R}$. Let $\epsilon > 0$. Put $U = V_{\epsilon}(\ell)$. Then there exists neighborhood W of c such that $f(W \cap (A \setminus \{c\}) \subset U$. Then there exists $\delta > 0$ such that $V_{\delta}(c) \subset W$. Hence it follows that for all $x \in A$ with $0 < |x - c| < \delta$, $x \in W \cap (A \setminus \{c\})$ and therefore $|f(x) - \ell| < \epsilon$.

Case 2. $\ell = \infty$. Let $M > 0$ Put $U = V_M(\infty)$. By assumption there exists neighborhood W of ∞ such that $f(W \cap A) \subset V_M(\infty)$. Then there is l such that $V_l(\infty) \subset W$. Hence similar as in above, for all $x > l$, $x \in A$, we must have $f(x) > M$. The case for $\ell = -\infty$ is similar.

Q3. Let $f, g: X \to (0, \infty)$ and $x_0 \in X^c \cap \mathbb{R}$. Show that

¹please send an email to <nclliu@math.cuhk.edu.hk> if you have spotted any typo/error/mistake.

- (i) $\lim_{x \to x_0} f(x) = \ell \in [-\infty, \infty]$ iff $\lim_{x \to x_0} f(x) = -\ell$.
- (ii) $\lim_{x \to x_0} g(x) = 0$ iff $\lim_{x \to x_0} x_0$ $\frac{1}{g(x)} = \infty$ (Can the assumption $g(x) \in (0, \infty)$ for all x replaced by $g(x) \in \mathbb{R} \setminus \{0\}$ for all x?)
- (iii) If $\lim_{x \to x_0} f(x) = \ell \in (0, \infty)$ and $\lim_{x \to x_0} g(x) = 0$, then $\lim_{x \in X} x_0$ $\frac{f(x)}{g(x)} = +\infty.$
- (iv) Show that $\lim_{x \to x_0} x \to x_0$ \boldsymbol{x} $\frac{x}{x\sqrt{x}} = +\infty$ by two methods:
	- (a) Use the results $(i)-(iii)$.
	- (b) Check from def.

Solution. (i): $\lim_{x \in X} x_0 f(x) = \ell$ iff: for all neighborhood U of ℓ there exists a neighborhood W of x_0 such that $\widetilde{f(W} \cap (X \setminus \{x_0\})) \subset U$, i.e. $-f(W \cap (X \setminus \{x_0\})) \subset -U$. Note that for any neighborhood U of ℓ , $-U$ is a neighborhood of $-\ell$. Hence (i) follows.

(ii): (\Rightarrow) Suppose $\lim_{x \in X} g(x) = 0$. Let $M > 0$, then $\epsilon := \frac{1}{M} > 0$, there exists $\delta > 0$ such that for all $x \in X$ with $x \in V_\delta(x_0) \setminus \{x_0\}$, $0 \le g(x) < \epsilon = \frac{1}{M}$, so that $\frac{1}{g(x)} > M$.

(←) Suppose $\lim_{x \to x_0} x \to x_0$ $\frac{1}{g(x)} = \infty$. Let $\epsilon > 0$, then $M := \frac{1}{\epsilon} > 0$, so there exists $\delta > 0$ such that for $x \in X$ with $x \in V_\delta(x_0) \setminus \{x_0\}$, we have $\frac{1}{g(x)} > M$, i.e. $0 \le g(x) < \epsilon$.

The assumption that g is positively valued cannot be removed. To see this, take $g : \mathbb{R} \setminus \{0\} \to$ $\mathbb{R}\setminus\{0\}$ to be $g(x) = x$. Then $\lim_{\substack{x\to 0 \ x \in X}} g(x) = 0$ but $\lim_{\substack{x\to 0 \ x \in X}} g(x)$ 1 $\frac{1}{g(x)}$ does not exist.

(iii): First notice that as $\lim_{x \to x_0} f(x) = \ell > 0$, there exists $\delta' > 0$ such that $f(x) > \ell/2$ for $x \in V_\delta(x_0) \setminus \{x_0\}$. Let $M > 0$. For the positive number M_{ℓ}^2 , there exists $\delta'' > 0$ such that $\frac{1}{g(x)} > M_{\ell}^2$, so that $\frac{f(x)}{g(x)} > M$.

(iv): (a): Take $X = (1, \infty)$, $f(x) = x$, $g(x) = x - \sqrt{x}$, then $\lim_{x \to 1} f(x) = 1$, $\lim_{x \to 1} g(x) = 0$. By (iii), $\lim_{x\to 1}$ $\frac{f(x)}{g(x)} = +\infty.$

(b): Let $M > 0$. Observe that if $0 < x - 1 < \delta$, we have $1 < x < \delta + 1$, so $1 < \sqrt{x} < \sqrt{\delta + 1}$ and

$$
\frac{x}{x - \sqrt{x}} > \frac{1}{\delta}
$$

We want to find $\delta > 0$ such that $\frac{1}{\delta} \geq M$. To do this we just have to choose $\delta = \frac{1}{M}$.

Q4. Can the assumption $x_0 \in X^c \cap \mathbb{R}$ in **Q3** related to $x_0 \in X^c$?

Solution. For (i), (ii), (iii), yes. The proofs are the same as in **Q3.**(Replace $V_\delta(x_0)$ by $V_l(\infty)$).

(Q3, 4, 5, 9, 13 of Bartle 4.3)

Q3. Let $f(x) = |x|^{1/2}$ for $x \neq 0$. Show that $\lim_{0 \to 0^+} f(x) = \lim_{x \to 0^-} f(x) = +\infty$.

Solution. Let $M > 0$, take $\delta = \frac{1}{M^2}$. Then for x with $0 < x < \delta = \frac{1}{M^2}$, we have $\frac{1}{x^{1/2}} > M$. Hence $\lim_{x\to 0+} f(x) = \infty$. Because $f(x) = f(-x)$, so $\lim_{x\to 0-} f(x) = \infty$ as well.

Q5. Evaluate the following limits or show that they do not exist.

- (a) $\lim_{x \to 1^+} \frac{x}{x-1}$ ($x \neq 1$)
- (b) $\lim_{x \to 1} \frac{x}{x-1}$ ($x \neq 1$)
- (c) $\lim_{x\to 0+} (x+2)/\sqrt{x}$ ($x > 0$)

Solution. (a): $\lim_{x \to 1^+} \frac{1}{x-1} = +\infty$ so $\lim_{x \to 1^+} \frac{x}{x-1} = +\infty$ by **Q3**.

(b): Note $\lim_{x\to 1^-} \frac{x}{x-1} = -\infty$, hence the limit cannot exist.

(c): $\lim_{x\to 0^+} \frac{1}{\sqrt{x}}$ $\frac{y}{x} = +\infty$ and $\lim_{x\to 0+} x + 2 = 2$ implies that $\lim_{x\to 0+} (x+2)$ √ $2 = +\infty$ by **Q3**.

Q9. Show that if $f : (a, \infty) \to \mathbb{R}$ is such that $\lim_{x\to\infty} x f(x) = L$ where $L \in \mathbb{R}$, then $\lim_{x\to\infty} f(x) = 0.$

Solution. Let $\epsilon > 0$. Notice $\lim_{x \to \infty} \frac{1}{x} = 0$, there exists l' such that $\left| \frac{1}{x} \right|$ $\frac{1}{x}$ | < ϵ for $x \in V_{l'}(\infty)$. By assumption, there exists l'' such that $|x f(x)| < |L| + 1$ for $x \in V_{l''}(\infty)$. Take $l = \max(l', l'')$, then $|f(x)| < (|L| + 1)\epsilon$.

Q13. Let f and g be defined on (a, ∞) and suppose $\lim_{x\to\infty} f = L$ and $\lim_{x\to\infty} g = \infty$. Prove that $\lim_{x\to\infty} f \circ g = L$.

Solution. Let U be a neighborhood of L. Then there exists a neighborhood W of ∞ such that $f(y) \in U$ for $y \in W$. For this neighborhood W, there exists a neighborhood V of ∞ such that $g(x) \in W$ for all $x \in V$. It follows that for all $x \in V$, $f \circ g(x) \in U$.