
MATH2050B 2021 HW 6
TA’s solutions1 to selected problems

Q1. Let f : R→ R be additive: f(x+ y) = f(x) + f(y) for all x, y ∈ R. Show that

(i) f(0) = 0

(ii) f(−x) = −f(x)

(iii) f(nx) = nf(x) for all n ∈ Z, x ∈ R

(iv) f( xm) = f(x)
m for all m ∈ N, x ∈ R

(v) f(rx) = rf(x) for all r ∈ Q, x ∈ R

and that limx→x0 f(x) exists in R for some x0 ∈ R iff limx→c f(x) exists for any c ∈ R (what
then limx→0 f(x) is?) Show further that (assuming limx→x0 f(x) exists in R for some x0 ∈ R),
with k := f(1), f(x) = kx for all x ∈ R.

Solution. (i): Put x, y = 0 into f(x + y) = f(x) + f(y) gives f(0) = 0. (ii): 0 = f(x − x) =
f(x) + f(−x) gives f(−x) = −f(x) for all x.

(iii): Let n ∈ Z and x ∈ R. The case n = 0 is (i). First we deal with the case n > 0. Note
the case when n = 1 is clearly true. Suppose for some n0 > 0 we have f(n0x) = n0f(x), then
f((n0+1)x) = f(x)+f(n0x) = (n0+1)f(x). By MI f(nx) = nf(x) for all n > 0 and x ∈ R. For
the case n < 0, note by the previous case and (ii): f(nx) = f(−n · −x) = −nf(−x) = nf(x).

(iv): Let m ∈ N, x ∈ R. By (iii) f( xm) = 1
m(mf( xm)) = 1

mf(x). (v): Let r ∈ Q, then there exist
n ∈ Z, m ∈ N such that r = n

m , so f(rx) = f(nxm ) = 1
mf(nx) = rf(x).

Next, assume that limx→x0 f(x) exists at one point x0, we prove that limx→c f(x) exists at any
point c ∈ R. Put L = limx→x0 f(x). Let ε > 0, then there exists δ > 0 such that for any x with
0 < |x− x0| < δ, we have |f(x)− L| < ε.

Note for any x with 0 < |x− c| < δ, we have 0 < |(x− c+ x0)− x0| < δ, therefore

|f(x)− f(c− x0)− L| = |f(x− c+ x0)− L| < ε

We conclude that limx→c f(x) exists and equals f(c − x0) + L. To calculate limx→0 f(x), use
f(0 + 1

n) = f(0) + 1
nf(1)→ 0 as n→∞.

Finally, assume limx→x0 f(x) exists in R for some x0, and k = f(1). Let x ∈ R, we show
f(x) = kx. Choose a sequence of rational numbers (rn)∞n=1 such that rn → x. By assumption
f(rn)→ f(x). By (v), f(rn) = rnk. Hence f(x) = limn rnk = kx.

(Q14-17 of Section 4.1, 4th edition)

Q14. Let c ∈ R, f : R→ R such that limx→c f(x)2 = L.

(a) Show that if L = 0, then limx→c f(x) = 0.

(b) Show by example that if L 6= 0, then f may not have a limit at c.

1please kindly send an email to nclliu@math.cuhk.edu.hk if you have spotted any typo/error/mistake.
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Solution. (a): Let ε > 0, then ε2 > 0, then there exists δ > 0 such that for all x with
0 < |x− c| < δ, we have |f(x)2| < ε2, i.e. |f(x)| < ε. Hence limx→c f(x) exists and equals 0.

(b): Let f : R → R be defined by f(x) = −1 for x < 0 and f(x) = 1 for x ≥ 0. Then
limx→0 f(x)2 = 1 = L but limx→0 f(x) does not exist.

Q15. Let f : R → R be defined by setting f(x) := x if x is rational, and f(x) = 0 if x is
irrational.

(a) Show that f has a limit at x = 0.

(b) Use a sequential argument to show that if c 6= 0, then f does not have a limit at c.

Solution. (a): Let ε > 0. Choose δ = ε > 0. For any x with 0 < |x| < δ, we have either
f(x) = x or f(x) = 0. So |f(x)− 0| < ε and hence limx→0 f(x) exists.

(b): Choose a sequence (rn) of rational numbers with rn → c, and a sequence (tn) of irrational
numbers with tn → c. Then f(rn)→ c and f(tn)→ 0. Hence limx→c f(x) does not exist.

Q16. Let f : R→ R, let I be an open interval in R and let c ∈ I. If f1 is the restriction of f to
I, show that f1 has a limit at c if and only if f has a limit at c, and that the limits are equal.

Solution. (⇒)Assume f1 has a limit at c, say the limit is L. Let ε > 0, then there exists δ1 > 0
such that for x ∈ I with 0 < |x− c| < δ, we have |f1(x)− L| < ε.

Choose δ < δ1 such that Vδ(c) ⊂ I (this is do-able because I is open), then for all x ∈ R with
0 < |x− c| < δ, we must have x ∈ I and so |f(x)− L| < ε. Hence limx→c f(x) = L.

(⇐)Assume f has a limit at c, say the limit is L. Let ε > 0, then there exists δ > 0 such that
for x ∈ R with 0 < |x− c| < δ, we have |f(x)−L| < ε. Now, for any x ∈ I with 0 < |x− c| < δ,
we have |f1(x)− L| < ε. Hence limx→c f1(x) = L.

Q17. Let f : R→ R, let J be a closed interval in R, and let c ∈ J . If f2 is the restriction of f
to J , show that if f has a limit at c then f2 has a limit at c. Show by example that it does not
follow that if f2 has a limit at c then f has a limit at c.

Solution. The first part is identical to (⇐) part of Q16. Consider the function f defined in
Q14(b), J = [0, 1], then f2 : [0, 1] → R is given by f2(x) = 1, and clearly limx→0 f2(x) = 1.
But limx→0 f(x) does not exist.

Q3. Use ε-δ definition to check that

(i) limx→−1
x+5
2x+3 = 4

(ii) limx→0 x+ sgn(x), limx→0 sin( 1
x2

) does not exist in R

Solution. (i) Note x+5
2x+3 − 4 = (x+ 1) −72x+3 , and if 0 < |x+ 1| < 1

10 , then 4
5 < 2x+ 3 < 6

5 . Let

ε > 0, take δ = min(ε, 1
10), for any x with 0 < |x+ 1| < δ, we have

| x+ 5

2x+ 3
− 4| < ε

35

4

It follows that limx→−1
x+5
2x+3 = 4.
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(ii): Suppose on the contrary that limx→0 x+ sgn(x) = L exists. Let ε > 0. Then there exists
δ > 0 such that for any x with 0 < |x| < δ, |x+ sgn(x)− L| < ε.

Note for all large n, | ± 1
n | < δ (this statement means: there exists N such that | ± 1

n | < δ for
all n ≥ N) We have that ∣∣∣ 1

n
+ sgn(

1

n
)− L

∣∣∣ < ε, for all large n

Taking n → ∞, |1 − L| ≤ ε. Because ε is arbitrarily chosen, 1 = L. On the other hand we
can replace 1

n by − 1
n in the above inequality, which will give us | − 1− L| < ε for all ε. Hence

L = −1. Contradiction.

Next, suppose on the contrary that limx→0 sin( 1
x2

) = L exists. Let 1
2 > ε > 0, then there exists

δ > 0 such that for any x with 0 < |x| < δ, we have∣∣∣ sin(
1

x2
)− L

∣∣∣ < ε

Put xn = 1√
2nπ

where n ∈ N. For all large n, we have 0 < |xn| < δ, sin( 1
x2n

) = 0. On the other

hand, if we put yn = 1√
2nπ+π/2

, then for all large n, 0 < |yn| < δ, sin( 1
y2n

) = 1. Now

1 = |0− 1| =
∣∣∣ sin(

1

x2n
)− sin(

1

y2n
)
∣∣∣ ≤ ∣∣∣ sin(

1

x2n
)− L

∣∣∣+
∣∣∣ sin(

1

y2n
)− L

∣∣∣ < 2ε

But ε < 1
2 by assumption. Contradiction.

(Q1, 3, 8-11, 15 of Section 4.2, 4th edition)

Q1. Apply Theorem 4.2.4 to determine the following limits:

(a) limx→1(x+ 1)(2x+ 3)

(b) limx→1
x2+2
x2−2

(c) limx→2
1

x+1 −
1
2x

(d) limx→0
x+1
x2+2

Solution. (a): Note limx→1 x+ 1 = 2 and limx→1 2x+ 3 = 5, so the required limit is 10.

(b): Note limx→1 x
2 + 2 = 3, limx→1 x

2 − 2 = −1, so the required limit is −3.

(c): Note limx→2
1

x+1 = 1
3 and limx→2

1
2x = 1

4 , so the required limit is 1
12 .

(d): Note limx→0 x+ 1 = 1 and limx→0 x
2 + 2 = 2, so the required limit is 1

2 .

Q3. Find limx→0

√
1+2x−

√
1+3x

x+2x2
where x > 0.

Solution. Notice that
√

1 + 2x−
√

1 + 3x

x+ 2x2
=

−1

(1 + 2x)(
√

1 + 2x+
√

1 + 3x)
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Because limx→0 1 + 2x = 1, limx→0

√
1 + 2x+

√
1 + 3x = 2, it follows from Theorem 4.2.4 that

limx→0

√
1+2x−

√
1+3x

x+2x2
= −1

2 .

Q8. Let n ∈ N be such that n ≥ 3. Derive the inequality −x2 ≤ xn ≤ x2 for −1 < x < 1. Then
use the fact that limx→0 x

2 = 0 to show that limx→0 x
n = 0.

Solution. Let −1 < x < 1. Note |x| < 1, therefore |xn| < x2. Hence limx→0 x
n = 0 by squeeze

theorem.

Q9. Let f, g be defined on A to R and let c be a cluster point of A.

(a) Show that if both limx→c f and limx→c f + g exist, then limx→c g exists.

(b) If limx→c f and limx→c fg, does it follow that limx→c g exists?

Solution. (a) follows from the addition rule and g = f + g − f . (b): Let g : A → R be any
function such that g does not have a limit at c (try to explicitly define one). Take f : A → R
be f(x) = 0. Then the assumptions are satisfied but limx→c g does not exist.

Q10. Give examples of functions f and g such that f and g do not have limits at a point c,
but such that both f + g and fg have limits at c.

Solution. Let f : [−1, 1] → R be defined by f(x) = −1 if x < 0 and f(x) = 1 if x ≥ 0. Let
g[−1, 1] → R be g(x) = −f(x). Then f(x) + g(x) = 0 for all x and f(x)g(x) = 1 for all x.
Hence f , g are the desired functions.

Q11. Determine whether the following limits exist on R.

(a) limx→0 sin(1/x2) (x 6= 0)

(b) limx→0 x sin(1/x2) (x 6= 0)

(c) limx→0 sgn sin(1/x) (x 6= 0)

(d) limx→0
√
x sin(1/x2) (x > 0)

Solution. (a): Please refer to Q3. (b): limit exists and equals 0 because∣∣∣x sin(
1

x2
)
∣∣∣ ≤ |x|

(c): Limit does not exist. This can be seen by using sequential criteria: Let xn = 1
2nπ+π/2 ,

yn = 1
2nπ−π/2 . Then xn, yn → 0 but sgn sin(1/xn) = 1 and sgn sin(1/yn) = −1 for all n.

(d): limit exists and equals 0 because∣∣∣√x sin(
1

x2
)
∣∣∣ ≤ |√x|

Q15. Let A ⊂ R, f : A → R and let c ∈ R be a cluster point of A. In addition, suppose that
f(x) ≥ 0 for all x ∈ A, and let

√
f be the function defined for x ∈ A by (

√
f)(x) =

√
f(x). If

limx→c f(x) exists, prove that limx→c
√
f =
√

limx→c f .

Solution. Let L = limx→c f(x).
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Case 1. L = 0. Let ε > 0, then ε2 > 0, and there exists δ > 0 such that |f(x)| < ε2 for all
x ∈ A with 0 < |x− c| < δ. Hence |

√
f(x)| < ε for all x ∈ A with 0 < |x− c| < δ.

Case 2. L 6= 0. Then L > 0. Let ε > 0. Since limx→c f(x) = L, there exists δ > 0 such that
|f(x)− L| < ε

√
L for all x ∈ A with 0 < |x− c| < δ:

|
√
f(x)−

√
L| = |f(x)− L|

|
√
f(x) +

√
L|

<
|f(x)− L|√

L
< ε
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