MATH2050B 2021 HW 6

TA's solutions^{[1](#page-0-0)} to selected problems

Q1. Let $f : \mathbb{R} \to \mathbb{R}$ be additive: $f(x + y) = f(x) + f(y)$ for all $x, y \in \mathbb{R}$. Show that

- (i) $f(0) = 0$
- (ii) $f(-x) = -f(x)$
- (iii) $f(nx) = nf(x)$ for all $n \in \mathbb{Z}, x \in \mathbb{R}$
- (iv) $f(\frac{x}{x})$ $\frac{x}{m}$) = $\frac{f(x)}{m}$ for all $m \in \mathbb{N}, x \in \mathbb{R}$
- (v) $f(rx) = rf(x)$ for all $r \in \mathbb{Q}, x \in \mathbb{R}$

and that $\lim_{x\to x_0} f(x)$ exists in R for some $x_0 \in \mathbb{R}$ iff $\lim_{x\to c} f(x)$ exists for any $c \in \mathbb{R}$ (what then $\lim_{x\to 0} f(x)$ is?) Show further that (assuming $\lim_{x\to x_0} f(x)$ exists in $\mathbb R$ for some $x_0 \in \mathbb R$), with $k := f(1)$, $f(x) = kx$ for all $x \in \mathbb{R}$.

Solution. (i): Put $x, y = 0$ into $f(x + y) = f(x) + f(y)$ gives $f(0) = 0$. (ii): $0 = f(x - x) =$ $f(x) + f(-x)$ gives $f(-x) = -f(x)$ for all x.

(iii): Let $n \in \mathbb{Z}$ and $x \in \mathbb{R}$. The case $n = 0$ is (i). First we deal with the case $n > 0$. Note the case when $n = 1$ is clearly true. Suppose for some $n_0 > 0$ we have $f(n_0x) = n_0f(x)$, then $f((n_0+1)x) = f(x) + f(n_0x) = (n_0+1)f(x)$. By MI $f(nx) = nf(x)$ for all $n > 0$ and $x \in \mathbb{R}$. For the case $n < 0$, note by the previous case and (ii): $f(nx) = f(-n \cdot -x) = -nf(-x) = nf(x)$.

(*iv*): Let $m \in \mathbb{N}, x \in \mathbb{R}$. By (*iii*) $f\left(\frac{x}{n}\right)$ $\frac{x}{m}$) = $\frac{1}{m}(mf(\frac{x}{m}))$ $(\frac{x}{m}) = \frac{1}{m} f(x)$. (v): Let $r \in \mathbb{Q}$, then there exist $n \in \mathbb{Z}, m \in \mathbb{N}$ such that $r = \frac{n}{m}$ $\frac{n}{m}$, so $f(rx) = f(\frac{nx}{m})$ $\frac{mx}{m} = \frac{1}{m}f(nx) = rf(x).$

Next, assume that $\lim_{x\to x_0} f(x)$ exists at one point x_0 , we prove that $\lim_{x\to c} f(x)$ exists at any point $c \in \mathbb{R}$. Put $L = \lim_{x \to x_0} f(x)$. Let $\epsilon > 0$, then there exists $\delta > 0$ such that for any x with $0 < |x - x_0| < \delta$, we have $|f(x) - L| < \epsilon$.

Note for any x with $0 < |x - c| < \delta$, we have $0 < |(x - c + x_0) - x_0| < \delta$, therefore

$$
|f(x) - f(c - x_0) - L| = |f(x - c + x_0) - L| < \epsilon
$$

We conclude that $\lim_{x\to c} f(x)$ exists and equals $f(c-x_0) + L$. To calculate $\lim_{x\to 0} f(x)$, use $f(0 + \frac{1}{n}) = f(0) + \frac{1}{n}f(1) \to 0$ as $n \to \infty$.

Finally, assume $\lim_{x\to x_0} f(x)$ exists in R for some x_0 , and $k = f(1)$. Let $x \in \mathbb{R}$, we show $f(x) = kx$. Choose a sequence of rational numbers $(r_n)_{n=1}^{\infty}$ such that $r_n \to x$. By assumption $f(r_n) \to f(x)$. By (v) , $f(r_n) = r_n k$. Hence $f(x) = \lim_n r_n k = kx$.

 $(Q14-17$ of Section 4.1, 4th edition)

Q14. Let $c \in \mathbb{R}$, $f : \mathbb{R} \to \mathbb{R}$ such that $\lim_{x \to c} f(x)^2 = L$.

- (a) Show that if $L = 0$, then $\lim_{x \to c} f(x) = 0$.
- (b) Show by example that if $L \neq 0$, then f may not have a limit at c.

¹please kindly send an email to <nclliu@math.cuhk.edu.hk> if you have spotted any typo/error/mistake.

Solution. (a): Let $\epsilon > 0$, then $\epsilon^2 > 0$, then there exists $\delta > 0$ such that for all x with $0 < |x - c| < \delta$, we have $|f(x)^2| < \epsilon^2$, i.e. $|f(x)| < \epsilon$. Hence $\lim_{x \to c} f(x)$ exists and equals 0.

(b): Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = -1$ for $x < 0$ and $f(x) = 1$ for $x \ge 0$. Then $\lim_{x\to 0} f(x)^2 = 1 = L$ but $\lim_{x\to 0} f(x)$ does not exist.

Q15. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by setting $f(x) := x$ if x is rational, and $f(x) = 0$ if x is irrational.

- (a) Show that f has a limit at $x = 0$.
- (b) Use a sequential argument to show that if $c \neq 0$, then f does not have a limit at c.

Solution. (a): Let $\epsilon > 0$. Choose $\delta = \epsilon > 0$. For any x with $0 < |x| < \delta$, we have either $f(x) = x$ or $f(x) = 0$. So $|f(x) - 0| < \epsilon$ and hence $\lim_{x\to 0} f(x)$ exists.

(b): Choose a sequence (r_n) of rational numbers with $r_n \to c$, and a sequence (t_n) of irrational numbers with $t_n \to c$. Then $f(r_n) \to c$ and $f(t_n) \to 0$. Hence $\lim_{x \to c} f(x)$ does not exist.

Q16. Let $f : \mathbb{R} \to \mathbb{R}$, let I be an open interval in \mathbb{R} and let $c \in I$. If f_1 is the restriction of f to I, show that f_1 has a limit at c if and only if f has a limit at c, and that the limits are equal.

Solution. (\Rightarrow) Assume f_1 has a limit at c, say the limit is L. Let $\epsilon > 0$, then there exists $\delta_1 > 0$ such that for $x \in I$ with $0 < |x - c| < \delta$, we have $|f_1(x) - L| < \epsilon$.

Choose $\delta < \delta_1$ such that $V_\delta(c) \subset I$ (this is do-able because I is open), then for all $x \in \mathbb{R}$ with $0 < |x - c| < \delta$, we must have $x \in I$ and so $|f(x) - L| < \epsilon$. Hence $\lim_{x \to c} f(x) = L$.

 (\Leftarrow) Assume f has a limit at c, say the limit is L. Let $\epsilon > 0$, then there exists $\delta > 0$ such that for $x \in \mathbb{R}$ with $0 < |x - c| < \delta$, we have $|f(x) - L| < \epsilon$. Now, for any $x \in I$ with $0 < |x - c| < \delta$, we have $|f_1(x) - L| < \epsilon$. Hence $\lim_{x \to c} f_1(x) = L$.

Q17. Let $f : \mathbb{R} \to \mathbb{R}$, let J be a closed interval in \mathbb{R} , and let $c \in J$. If f_2 is the restriction of f to J, show that if f has a limit at c then f_2 has a limit at c. Show by example that it does not follow that if f_2 has a limit at c then f has a limit at c.

Solution. The first part is identical to (\Leftarrow) part of **Q16**. Consider the function f defined in **Q14(b)**, $J = [0, 1]$, then $f_2 : [0, 1] \to \mathbb{R}$ is given by $f_2(x) = 1$, and clearly $\lim_{x\to 0} f_2(x) = 1$. But $\lim_{x\to 0} f(x)$ does not exist.

Q3. Use ϵ - δ definition to check that

- (i) $\lim_{x \to -1} \frac{x+5}{2x+3} = 4$
- (ii) $\lim_{x\to 0} x + \text{sgn}(x)$, $\lim_{x\to 0} \sin(\frac{1}{x^2})$ does not exist in $\mathbb R$

Solution. (i) Note $\frac{x+5}{2x+3} - 4 = (x+1)\frac{-7}{2x+3}$, and if $0 < |x+1| < \frac{1}{10}$, then $\frac{4}{5} < 2x+3 < \frac{6}{5}$ $\frac{6}{5}$. Let $\epsilon > 0$, take $\delta = \min(\epsilon, \frac{1}{10})$, for any x with $0 < |x + 1| < \delta$, we have

$$
|\frac{x+5}{2x+3}-4|<\epsilon \frac{35}{4}
$$

It follows that $\lim_{x \to -1} \frac{x+5}{2x+3} = 4$.

(ii): Suppose on the contrary that $\lim_{x\to 0} x + \text{sgn}(x) = L$ exists. Let $\epsilon > 0$. Then there exists $\delta > 0$ such that for any x with $0 < |x| < \delta, |x + \text{sgn}(x) - L| < \epsilon$.

Note for all large $n, |\pm \frac{1}{n}| < \delta$ (this statement means: there exists N such that $|\pm \frac{1}{n}| < \delta$ for all $n \geq N$) We have that

$$
\Big|\frac{1}{n}+\mathrm{sgn}(\frac{1}{n})-L\Big|<\epsilon, \ \ \text{for all large } n
$$

Taking $n \to \infty$, $|1 - L| \leq \epsilon$. Because ϵ is arbitrarily chosen, $1 = L$. On the other hand we can replace $\frac{1}{n}$ by $-\frac{1}{n}$ $\frac{1}{n}$ in the above inequality, which will give us $|-1-L| < \epsilon$ for all ϵ . Hence $L = -1$. Contradiction.

Next, suppose on the contrary that $\lim_{x\to 0} \sin(\frac{1}{x^2}) = L$ exists. Let $\frac{1}{2} > \epsilon > 0$, then there exists $\delta > 0$ such that for any x with $0 < |x| < \delta$, we have

$$
\left|\sin(\frac{1}{x^2}) - L\right| < \epsilon
$$

Put $x_n = \frac{1}{\sqrt{2a}}$ $\frac{1}{2n\pi}$ where $n \in \mathbb{N}$. For all large n, we have $0 < |x_n| < \delta$, $\sin(\frac{1}{x_n^2}) = 0$. On the other hand, if we put $y_n = \frac{1}{\sqrt{2n-1}}$ $\frac{1}{2n\pi + \pi/2}$, then for all large $n, 0 < |y_n| < \delta$, $\sin(\frac{1}{y_n^2}) = 1$. Now

$$
1 = |0 - 1| = \left| \sin(\frac{1}{x_n^2}) - \sin(\frac{1}{y_n^2}) \right| \le \left| \sin(\frac{1}{x_n^2}) - L \right| + \left| \sin(\frac{1}{y_n^2}) - L \right| < 2\epsilon
$$

But $\epsilon < \frac{1}{2}$ by assumption. Contradiction.

(Q1, 3, 8-11, 15 of Section 4.2, 4th edition)

Q1. Apply Theorem 4.2.4 to determine the following limits:

(a)
$$
\lim_{x \to 1} (x+1)(2x+3)
$$

(b)
$$
\lim_{x \to 1} \frac{x^2 + 2}{x^2 - 2}
$$

(c) $\lim_{x\to 2} \frac{1}{x+1} - \frac{1}{2x}$ $\overline{2x}$

(d)
$$
\lim_{x \to 0} \frac{x+1}{x^2+2}
$$

Solution. (a): Note $\lim_{x\to 1} x + 1 = 2$ and $\lim_{x\to 1} 2x + 3 = 5$, so the required limit is 10.

(b): Note $\lim_{x\to 1} x^2 + 2 = 3$, $\lim_{x\to 1} x^2 - 2 = -1$, so the required limit is -3.

- (c): Note $\lim_{x\to 2} \frac{1}{x+1} = \frac{1}{3}$ $\frac{1}{3}$ and $\lim_{x \to 2} \frac{1}{2x} = \frac{1}{4}$ $\frac{1}{4}$, so the required limit is $\frac{1}{12}$.
- (d): Note $\lim_{x\to 0} x + 1 = 1$ and $\lim_{x\to 0} x^2 + 2 = 2$, so the required limit is $\frac{1}{2}$.
- **Q3.** Find $\lim_{x\to 0}$ $\frac{\sqrt{1+2x}-\sqrt{1+3x}}{x+2x^2}$ where $x > 0$.

Solution. Notice that

$$
\frac{\sqrt{1+2x} - \sqrt{1+3x}}{x+2x^2} = \frac{-1}{(1+2x)(\sqrt{1+2x} + \sqrt{1+3x})}
$$

Because $\lim_{x\to 0} 1 + 2x = 1$, $\lim_{x\to 0}$ √ $1 + 2x +$ √ $1 + 3x = 2$, it follows from Theorem 4.2.4 that $\lim_{x\to 0}$ $\frac{\sqrt{1+2x}-\sqrt{1+3x}}{x+2x^2}=-\frac{1}{2}$ $rac{1}{2}$.

Q8. Let $n \in \mathbb{N}$ be such that $n \geq 3$. Derive the inequality $-x^2 \leq x^n \leq x^2$ for $-1 < x < 1$. Then use the fact that $\lim_{x\to 0} x^2 = 0$ to show that $\lim_{x\to 0} x^n = 0$.

Solution. Let $-1 < x < 1$. Note $|x| < 1$, therefore $|x^n| < x^2$. Hence $\lim_{x\to 0} x^n = 0$ by squeeze theorem.

Q9. Let f, q be defined on A to R and let c be a cluster point of A.

- (a) Show that if both $\lim_{x\to c} f$ and $\lim_{x\to c} f + g$ exist, then $\lim_{x\to c} g$ exists.
- (b) If $\lim_{x\to c} f$ and $\lim_{x\to c} fg$, does it follow that $\lim_{x\to c} g$ exists?

Solution. (a) follows from the addition rule and $q = f + q - f$. (b): Let $q : A \rightarrow \mathbb{R}$ be any function such that g does not have a limit at c (try to explicitly define one). Take $f : A \to \mathbb{R}$ be $f(x) = 0$. Then the assumptions are satisfied but $\lim_{x\to c} g$ does not exist.

Q10. Give examples of functions f and g such that f and g do not have limits at a point c, but such that both $f + g$ and fg have limits at c.

Solution. Let $f : [-1,1] \to \mathbb{R}$ be defined by $f(x) = -1$ if $x < 0$ and $f(x) = 1$ if $x \ge 0$. Let $g[-1,1] \rightarrow \mathbb{R}$ be $g(x) = -f(x)$. Then $f(x) + g(x) = 0$ for all x and $f(x)g(x) = 1$ for all x. Hence f, g are the desired functions.

Q11. Determine whether the following limits exist on R.

- (a) $\lim_{x\to 0} \sin(1/x^2)$ $(x \neq 0)$
- (b) $\lim_{x\to 0} x \sin(1/x^2) \ (x \neq 0)$
- (c) $\lim_{x\to 0}$ sgn sin(1/x) ($x \neq 0$)
- (d) $\lim_{x\to 0} \sqrt{x} \sin(1/x^2) \ (x > 0)$

Solution. (a): Please refer to Q3. (b): limit exists and equals 0 because

$$
\left|x\sin(\frac{1}{x^2})\right|\leq |x|
$$

(c): Limit does not exist. This can be seen by using sequential criteria: Let $x_n = \frac{1}{2n\pi^+}$ $rac{1}{2n\pi+\pi/2}$ $y_n = \frac{1}{2n\pi-1}$ $\frac{1}{2n\pi - \pi/2}$. Then $x_n, y_n \to 0$ but sgn sin $(1/x_n) = 1$ and sgn sin $(1/y_n) = -1$ for all n.

(d): limit exists and equals 0 because

$$
\left|\sqrt{x}\sin(\frac{1}{x^2})\right|\leq |\sqrt{x}|
$$

Q15. Let $A \subset \mathbb{R}$, $f : A \to \mathbb{R}$ and let $c \in \mathbb{R}$ be a cluster point of A. In addition, suppose that **Q15.** Let $A \subseteq \mathbb{R}, J \colon A \to \mathbb{R}$ and let $c \in \mathbb{R}$ be a cluster point of A. In addition, suppose that $f(x) \ge 0$ for all $x \in A$, and let \sqrt{f} be the function defined for $x \in A$ by $(\sqrt{f})(x) = \sqrt{f(x)}$. If $\lim_{x\to c} f(x)$ exists, prove that $\lim_{x\to c} \sqrt{f} = \sqrt{\lim_{x\to c} f}$.

Solution. Let $L = \lim_{x \to c} f(x)$.

Case 1. $L = 0$. Let $\epsilon > 0$, then $\epsilon^2 > 0$, and there exists $\delta > 0$ such that $|f(x)| < \epsilon^2$ for all $x \in A$ with $0 < |x - c| < \delta$. Hence √ $|f(x)| < \epsilon$ for all $x \in A$ with $0 < |x - c| < \delta$.

Case 2. $L \neq 0$. Then $L > 0$. Let $\epsilon > 0$. Since lim_{x→c} $f(x) = L$, there exists $\delta > 0$ such that $|f(x) - L| < \epsilon \sqrt{L}$ for all $x \in A$ with $0 < |x - c| < \delta$:

$$
|\sqrt{f(x)}-\sqrt{L}|=\frac{|f(x)-L|}{|\sqrt{f(x)}+\sqrt{L}|}<\frac{|f(x)-L|}{\sqrt{L}}<\epsilon
$$