
MATH2050B 2021 HW 5
TA’s solutions1 to selected problems

Q1. Let
∑∞

n=1 an be a positive series and
∑∞

n=1 2na2n be its condensed one and let

sn :=
n∑
i=1

ai, ∀n = 1, 2, . . .

tn :=

n∑
i=1

2ia2i , ∀n = 1, 2, . . .

Suppose (an) decreases to 0. Show that
∑∞

n=1 an < +∞ iff
∑∞

n=1 2na2n < +∞ (known as
Cauchy Condensation test) along the following steps: show that for all n ≥ 2:

(i) s2n−1 ≤ a1 + tn−1

(ii) s2n ≥ a1 + tn
2

Solution. To show (i), observe that: a2 + a3 ≤ 2a2, a4 + a5 + ..+ a7 ≤ 4a4, etc. Formally, for
every i = 1, 2, . . .

a2i + a2i+1 + · · ·+ a2i+(2i−1) ≤ 2ia2i

Therefore

s2n−1 =
2n−1∑
i=1

ai = a1 +
n−1∑
i=1

2i−1∑
k=0

a2i+k

≤ a1 +
n−1∑
i=1

2ia2i = a1 + tn−1

For (ii), observe that: 2a4 ≤ a3+a4, 4a8 ≤ a5+a6+· · ·+a8, etc. Formally, for every i = 1, 2, . . .

2ia2i+1 ≤ a2i+1 + a2i+2 + · · ·+ a2i+2i

Therefore

a1 +
tn
2

= a1 +
n∑
i=1

2i−1a2i

≤ a1 + a2 +

n−1∑
i=1

2ia2i+1

≤ a1 + a2 +

n−1∑
i=1

2i∑
k=1

a2i+k

≤ a1 + a2 +
2n∑
i=3

ai

Finally let us prove that (tn) converges iff (sn) converges. Because both (tn) and (sn) are
increasing sequence, so to show convergence it suffices to show boundedness.

1please kindly send an email to nclliu@math.cuhk.edu.hk if you have spotted any typo/error/mistake.
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Assume (sn) converges, then (sn) is bounded by some M , then using (ii), we have tn ≤ 2M−2a1
for all n. Hence (tn) converges. Conversely assume (tn) converges, note that sn ≤ s2n for all n,
so sn ≤ s2n ≤ a1 + tn−1, which shows (sn) is bounded.

Q2. For any bounded sequence (xn):

lim sup
n

sn := lim
n
sn = maxL = inf E

where

• sn := sup{xm : n ≤ m}

• L = {` ∈ R : ∃ some subseq of (xn) convergent to `}

• E = {u ∈ R : ∃N ∈ N s.t. xn ≤ u∀n ≥ N}

Is it true that lim supxn ∈ E?

Solution. Not true. Consider the sequence (xn) defined by xn = 1
n . Then (xn) is convergent

to 0, lim supxn = 0. In this case E = (0,∞)

Q3. Recall that for x0 ∈ R and δ > 0, Vδ(x0) := {x ∈ R : |x − x0| < δ}. Check all equalities
below: (Remark: there was a typo in the definition of Ac, corrected in here)

Ac := {c ∈ R : Vδ(c) intersects A \ {c} ∀δ > 0}
= {c ∈ R : ∀δ > 0 ∃a ∈ A s.t. 0 < |a− c| < δ} . . . (call this set A1)

= {c ∈ R : ∀n ∈ N ∃an ∈ A \ {c} s.t. |an − c| <
1

n
} . . . (A2)

= {c ∈ R : ∃ a seq (an) in A \ {c} s.t. lim
n
an = c} . . . (A3)

= {c ∈ R : dist(c, A \ {c}) = 0} . . . (A4)

where dist(x,B) = inf{|x− b| : b ∈ B} for all nonempty B ⊂ R.

Solution. We prove that Ac ⊂ A1 ⊂ A2 ⊂ A3 ⊂ A4 ⊂ Ac.

(Ac ⊂ A1) Let c ∈ Ac. Let δ > 0. Then Vδ(c) ∩ A \ {c} is nonempty, pick a point a in this
intersection, then a ∈ A, a 6= c, and so 0 < |a− c| < δ. c ∈ A1

(A1 ⊂ A2) Let c ∈ A1. Let n ∈ N. For δ = 1
n , there exists a ∈ A such that 0 < |a− c| < 1

n . It
follows that a 6= c or otherwise 0 = |a− c|. c ∈ A2

(A2 ⊂ A3) Let c ∈ A2. For every n ∈ N, there exists an ∈ A \ {c} such that |an − c| < 1
n . Then

the sequence (an) converges to c. c ∈ A3.

(A3 ⊂ A4) Let c ∈ A3. Note that the dist function is non-negative, i.e. dist(x,B) ≥ 0. Let (an)
be a sequence in A \ {c} convergent to c. Then for all n:

0 ≤ dist(c, A \ {c}) ≤ |c− an|

Taking n→∞ we see that dist(c, A \ {c}) = 0. x ∈ A3

(A4 ⊂ Ac) Let c ∈ A4. Let δ > 0. Note dist(c, A \ {c}) < δ, by definition of infimum there
exists a ∈ A \ {c} such that |a− c| < δ, i.e. Vδ(c) ∩A \ {c} 6= ∅. c ∈ Ac.

Q4. Let A := (1,
√

2) ∩Q. Identify Ac with each of the following methods:
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(a) Check via definition given in Q3.

(b) Let fc(x) = dist(x,A \ {c}) for all x ∈ R. Determine fc and hence identify Ac.

Solution. We check that Ac = [1,
√

2] in each of (a), (b):

(a): (Ac ⊂ [1,
√

2]). Let c ∈ Ac, suppose on the contrary that c ∈ (−∞, 1) or c ∈ (
√

2,∞). For
the first case, there exists a δ > 0 such that Vδ(c) ⊂ (−∞, 1). For the second case, there exists
a δ > 0 such that Vδ(c) ⊂ (

√
2,∞). In both cases, there exists δ > 0 with Vδ(c) ∩A \ {c} = ∅.

([1,
√

2] ⊂ Ac). Let c ∈ [1,
√

2]. Let δ > 0. Because Q is dense in R, so Vδ(c) ∩ A \ {c} 6= ∅.
Hence c ∈ Ac.

(b): fc(x) = 0 if x ∈ [1,
√

2], fc(x) = 1 − x if x < 1 and fc(x) = x −
√

2 if x ≥
√

2. Hence
fc(c) = 0 iff c ∈ [1,

√
2]. In Q3 we proved Ac = A4. Hence Ac = [1,

√
2].

Q5. Let x0 ∈ Ac, f : A → R and `1, `2 ∈ R. Suppose f(x) → `i (i = 1, 2) as x → x0 (x ∈ A).
Show that `1 = `2.

Solution. Let ε > 0, then there exists δ > 0 such that for all x ∈ A with 0 < |x − x0| < δ,
|f(x)− `i| < ε/2. Then |`1 − `2| < |f(x)− `1|+ |f(x)− `2| < ε. Hence `1 = `2.
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