MATH2050B 2021 HW 5

TA's solutions¹ to selected problems

Q1. Let $\sum_{n=1}^{\infty} a_n$ be a positive series and $\sum_{n=1}^{\infty} 2^n a_{2^n}$ be its condensed one and let

$$s_n := \sum_{i=1}^n a_i, \ \forall n = 1, 2, \dots$$

 $t_n := \sum_{i=1}^n 2^i a_{2^i}, \ \forall n = 1, 2, \dots$

Suppose (a_n) decreases to 0. Show that $\sum_{n=1}^{\infty} a_n < +\infty$ iff $\sum_{n=1}^{\infty} 2^n a_{2^n} < +\infty$ (known as Cauchy Condensation test) along the following steps: show that for all $n \ge 2$:

(i) $s_{2^n-1} \le a_1 + t_{n-1}$

(ii)
$$s_{2^n} \ge a_1 + \frac{t_n}{2}$$

Solution. To show (*i*), observe that: $a_2 + a_3 \le 2a_2$, $a_4 + a_5 + ... + a_7 \le 4a_4$, etc. Formally, for every i = 1, 2, ...

$$a_{2^{i}} + a_{2^{i}+1} + \dots + a_{2^{i}+(2^{i}-1)} \le 2^{i}a_{2^{i}}$$

Therefore

$$s_{2^{n}-1} = \sum_{i=1}^{2^{n}-1} a_{i} = a_{1} + \sum_{i=1}^{n-1} \sum_{k=0}^{2^{i}-1} a_{2^{i}+k}$$
$$\leq a_{1} + \sum_{i=1}^{n-1} 2^{i} a_{2^{i}} = a_{1} + t_{n-1}$$

For (*ii*), observe that: $2a_4 \leq a_3 + a_4, 4a_8 \leq a_5 + a_6 + \dots + a_8$, etc. Formally, for every $i = 1, 2, \dots$

$$2^{i}a_{2^{i+1}} \le a_{2^{i+1}} + a_{2^{i+2}} + \dots + a_{2^{i+2^{i}}}$$

Therefore

$$a_{1} + \frac{t_{n}}{2} = a_{1} + \sum_{i=1}^{n} 2^{i-1} a_{2^{i}}$$

$$\leq a_{1} + a_{2} + \sum_{i=1}^{n-1} 2^{i} a_{2^{i+1}}$$

$$\leq a_{1} + a_{2} + \sum_{i=1}^{n-1} \sum_{k=1}^{2^{i}} a_{2^{i}+k}$$

$$\leq a_{1} + a_{2} + \sum_{i=3}^{2^{n}} a_{i}$$

Finally let us prove that (t_n) converges iff (s_n) converges. Because both (t_n) and (s_n) are increasing sequence, so to show convergence it suffices to show boundedness.

¹please kindly send an email to nclliu@math.cuhk.edu.hk if you have spotted any typo/error/mistake.

Assume (s_n) converges, then (s_n) is bounded by some M, then using (ii), we have $t_n \leq 2M - 2a_1$ for all n. Hence (t_n) converges. Conversely assume (t_n) converges, note that $s_n \leq s_{2^n}$ for all n, so $s_n \leq s_{2^n} \leq a_1 + t_{n-1}$, which shows (s_n) is bounded.

Q2. For any bounded sequence (x_n) :

$$\limsup_{n} s_n := \lim_{n} s_n = \max L = \inf E$$

where

- $s_n := \sup\{x_m : n \le m\}$
- $L = \{\ell \in \mathbb{R} : \exists \text{ some subseq of } (x_n) \text{ convergent to } \ell\}$
- $E = \{ u \in \mathbb{R} : \exists N \in \mathbb{N} \text{ s.t. } x_n \le u \, \forall n \ge N \}$

Is it true that $\limsup x_n \in E$?

Solution. Not true. Consider the sequence (x_n) defined by $x_n = \frac{1}{n}$. Then (x_n) is convergent to 0, $\limsup x_n = 0$. In this case $E = (0, \infty)$

Q3. Recall that for $x_0 \in \mathbb{R}$ and $\delta > 0$, $V_{\delta}(x_0) := \{x \in \mathbb{R} : |x - x_0| < \delta\}$. Check all equalities below: (**Remark:** there was a typo in the definition of A^c , corrected in here)

$$A^{c} := \{c \in \mathbb{R} : V_{\delta}(c) \text{ intersects } A \setminus \{c\} \forall \delta > 0\}$$

= $\{c \in \mathbb{R} : \forall \delta > 0 \exists a \in A \text{ s.t. } 0 < |a - c| < \delta\} \dots \text{ (call this set } A_{1})$
= $\{c \in \mathbb{R} : \forall n \in \mathbb{N} \exists a_{n} \in A \setminus \{c\} \text{ s.t. } |a_{n} - c| < \frac{1}{n}\} \dots (A_{2})$
= $\{c \in \mathbb{R} : \exists a \text{ seq } (a_{n}) \text{ in } A \setminus \{c\} \text{ s.t. } \lim_{n} a_{n} = c\} \dots (A_{3})$
= $\{c \in \mathbb{R} : \text{dist}(c, A \setminus \{c\}) = 0\} \dots (A_{4})$

where $dist(x, B) = inf\{|x - b| : b \in B\}$ for all nonempty $B \subset \mathbb{R}$.

Solution. We prove that $A^c \subset A_1 \subset A_2 \subset A_3 \subset A_4 \subset A^c$.

 $(A^c \subset A_1)$ Let $c \in A^c$. Let $\delta > 0$. Then $V_{\delta}(c) \cap A \setminus \{c\}$ is nonempty, pick a point *a* in this intersection, then $a \in A$, $a \neq c$, and so $0 < |a - c| < \delta$. $c \in A_1$

 $(A_1 \subset A_2)$ Let $c \in A_1$. Let $n \in \mathbb{N}$. For $\delta = \frac{1}{n}$, there exists $a \in A$ such that $0 < |a - c| < \frac{1}{n}$. It follows that $a \neq c$ or otherwise 0 = |a - c|. $c \in A_2$

 $(A_2 \subset A_3)$ Let $c \in A_2$. For every $n \in \mathbb{N}$, there exists $a_n \in A \setminus \{c\}$ such that $|a_n - c| < \frac{1}{n}$. Then the sequence (a_n) converges to c. $c \in A_3$.

 $(A_3 \subset A_4)$ Let $c \in A_3$. Note that the dist function is non-negative, i.e. $dist(x, B) \ge 0$. Let (a_n) be a sequence in $A \setminus \{c\}$ convergent to c. Then for all n:

$$0 \le \operatorname{dist}(c, A \setminus \{c\}) \le |c - a_n|$$

Taking $n \to \infty$ we see that $dist(c, A \setminus \{c\}) = 0$. $x \in A_3$

 $(A_4 \subset A^c)$ Let $c \in A_4$. Let $\delta > 0$. Note dist $(c, A \setminus \{c\}) < \delta$, by definition of infimum there exists $a \in A \setminus \{c\}$ such that $|a - c| < \delta$, i.e. $V_{\delta}(c) \cap A \setminus \{c\} \neq \emptyset$. $c \in A^c$.

Q4. Let $A := (1, \sqrt{2}) \cap \mathbb{Q}$. Identify A^c with each of the following methods:

- (a) Check via definition given in Q3.
- (b) Let $f_c(x) = \text{dist}(x, A \setminus \{c\})$ for all $x \in \mathbb{R}$. Determine f_c and hence identify A^c .

Solution. We check that $A^c = [1, \sqrt{2}]$ in each of (a), (b):

(a): $(A^c \subset [1, \sqrt{2}])$. Let $c \in A^c$, suppose on the contrary that $c \in (-\infty, 1)$ or $c \in (\sqrt{2}, \infty)$. For the first case, there exists a $\delta > 0$ such that $V_{\delta}(c) \subset (-\infty, 1)$. For the second case, there exists a $\delta > 0$ such that $V_{\delta}(c) \subset (\sqrt{2}, \infty)$. In both cases, there exists $\delta > 0$ with $V_{\delta}(c) \cap A \setminus \{c\} = \emptyset$.

 $([1,\sqrt{2}] \subset A^c)$. Let $c \in [1,\sqrt{2}]$. Let $\delta > 0$. Because \mathbb{Q} is dense in \mathbb{R} , so $V_{\delta}(c) \cap A \setminus \{c\} \neq \emptyset$. Hence $c \in A^c$.

(b): $f_c(x) = 0$ if $x \in [1, \sqrt{2}]$, $f_c(x) = 1 - x$ if x < 1 and $f_c(x) = x - \sqrt{2}$ if $x \ge \sqrt{2}$. Hence $f_c(c) = 0$ iff $c \in [1, \sqrt{2}]$. In **Q3** we proved $A^c = A_4$. Hence $A^c = [1, \sqrt{2}]$.

Q5. Let $x_0 \in A^c$, $f : A \to \mathbb{R}$ and $\ell_1, \ell_2 \in \mathbb{R}$. Suppose $f(x) \to \ell_i$ (i = 1, 2) as $x \to x_0$ $(x \in A)$. Show that $\ell_1 = \ell_2$.

Solution. Let $\epsilon > 0$, then there exists $\delta > 0$ such that for all $x \in A$ with $0 < |x - x_0| < \delta$, $|f(x) - \ell_i| < \epsilon/2$. Then $|\ell_1 - \ell_2| < |f(x) - \ell_1| + |f(x) - \ell_2| < \epsilon$. Hence $\ell_1 = \ell_2$.