MATH2050B 2021 Assignment 2

TA's solutions^{[1](#page-0-0)} to selected problems

Q1. Using the axiom of R, do:

- (i) If A is a subset of R, bounded below but not above, and satisfies the property: $x \in A$ whenever there exists $a_1, a_2 \in A$ such that $a_1 < x < a_2$. Show that A is an interval
- (ii) State and prove the nested interval theorem.

Solution. (i): Let $a = \inf(A) \in \mathbb{R}$. We prove that $A = (a, \infty)$ or $A = [a, \infty)$:

Case 1. Suppose $a \in A$. Let $x \in A$, then $x \ge a$, thus $A \subset [a,\infty)$. Conversely let $x \in [a,\infty)$. if $x = a$ then certainly $x \in A$. If $x \neq a$, because A is not bounded above we can find $a_2 \in A$ such that $x < y$. Now we have $a < x < a_2$, so by the assumption on $A, x \in A$. Hence $A = [a, \infty)$.

Case 2. Suppose $a \notin A$. Let $x \in A$, then $x > a$, thus $A \subset (a, \infty)$. Conversely let $x \in (a, \infty)$. Because $x > a$, by definition of infimum, there exists $a_1 \in A$ such that $a < a_1 < x$. On the other hand, A is not bounded above means that there exists $a_2 \in A$ such that $x < a_2$. Now $a_1 < x < a_2$ where $a_1, a_2 \in A$. By the assumption on $A, x \in A$. Hence $A = (a, \infty)$.

(ii): (Nested interval theorem) Let $I_n = [a_n, b_n]$ be a sequence of intervals so that $I_{k+1} \subset I_k$ for all $k = 1, 2, \ldots$, then $\bigcap_{k=1}^{\infty} I_k \neq \emptyset$.

Proof. By the nested property, $[a_n, b_n] = I_n \subset I_1$ for all $n = 1, 2, \ldots$, so $a_n \leq b_1$ for all n. This shows that the set $\{a_n : n = 1, 2...\}$ is bounded above, let $a = \sup(A)$. We claim that $a \in \bigcap_{k=1}^{\infty} I_k$. To do this we need to show $a_n \le a \le b_n$ for all $n \cdot a_n \le a$ for all n is clear, it remains to show $a \leq b_n$ for all n. Suppose on the contrary that $a > b_k$ for some k. Then for all $n \geq k$, $a_n \leq b_k < a$. By the nested property, a_n is an increasing sequence, so we have in fact $a_n \leq b_k < a$ for all $n = 1, 2, \ldots$, this gives $a \leq b_k < a$ which is a contradiction.

Q2. For each of the following, compute the limit if exists in \mathbb{R}^* or show that the limit does not exist. Check each of your answers by definition.

- (i) $\lim_{x \to 7} \frac{x}{x-7}, x < 7$
- (iii) $\lim_{x\to 1} \frac{x^2}{x^2-1}$ $\frac{x^2}{x^2-2}$, $x \neq$ √ 2
- (iii) $\lim_{x\to\sqrt{2}} \frac{x^2}{x^2-1}$ $\frac{x^2}{x^2-2}$, $x \neq$ √ 2
- (iv) lim_{$x\rightarrow 0$} $\frac{\sqrt{1+2x}-\sqrt{1+3x}}{x+2x^2}, x > 0$

Solution. (i): The limit is $-\infty$. Let $M < 0$. For $x < 7$ with $0 < 7 - x < \delta$ where $\delta := \min(6, -\frac{1}{M})$, we have $x > 1$ and $7 - x < -\frac{1}{M}$. It follows that $\frac{x}{x-7} < -\frac{1}{\delta} \le M$.

(ii): The limit is -1. Note $\left|\frac{x^2}{x^2-2}+1\right| = 2\frac{x^2-1}{x^2-2}$ $\frac{x^2-1}{x^2-2}$. First observe that if $0 < |x-1| < \frac{1}{10}$, then $\frac{9}{10}$ < x < $\frac{11}{10}$ and so $-\frac{100}{110}$ $\frac{100}{119} > \frac{1}{x^2}$ $\frac{1}{x^2-2} > -\frac{100}{79}$

79

¹ please send an email to <nclliu@math.cuhk.edu.hk> if you have spotted any typo/error/mistake.

Let $\epsilon > 0$, because $\lim_{x\to 1} x^2 = 1$ (see proof below), there exists δ_0 so that for all x with $0 < |x-1| < \delta_0, |x^2-1| < \epsilon$. Take $\delta = \min(\delta_0, \frac{1}{10})$, then for x with $0 < |x-1| < \delta$, we have

$$
|\frac{x^2}{x^2-2}+1|=2|\frac{x^2-1}{x^2-2}|<\frac{200}{79}\epsilon
$$

*Proof of (lim_{x→1} x*² = 1). Let $\epsilon > 0$. Note that if $0 < |x - 1| < \frac{1}{2}$ $\frac{1}{2}$, then $\frac{3}{2} < x + 1$. Take $\delta = \min(\epsilon, \frac{1}{2})$, then for all x with $0 < |x - 1| < \delta$, we have $|x^2 - 1| = |x - 1| |x + 1| < \frac{3}{2}$ $rac{3}{2}\epsilon$.

(iii). The limit does not exist. Suppose on the contrary that the limit exists and equal to $\ell \in [-\infty, \infty]$. Then $\lim_{x \to \sqrt{2}+} \frac{x^2}{x^2-2} = \ell = \lim_{x \to \sqrt{2}-} \frac{x^2}{x^2-2}$ $rac{x^2}{x^2-2}$ too.

Claim. $\lim_{x \to \sqrt{2} +} \frac{x^2}{x^2 - 2} = +\infty$. Let $M > 0$. Take $\delta = \min(\frac{1}{M}, \frac{1}{10})$, then for x with $0 < x -$ √ $2 <$ δ, we have $\frac{1}{x+\sqrt{2}} > (\frac{1}{10} + 2\sqrt{2})^{-1}$ and $\frac{1}{x-\sqrt{2}} > \frac{1}{\delta} = M$, so

$$
\frac{x^2}{x^2-2} \ge \frac{2}{x^2-2} \ge M(\frac{1}{10}+2\sqrt{2})^{-1}
$$

Because $(\frac{1}{10} + 2\sqrt{2})^{-1}$ is a constant, it follows that $\lim_{x \to \sqrt{2} +} \frac{x^2}{x^2 - 2} = +\infty$.

Now, by our assumption that $\lim_{x\to\sqrt{2}-\frac{x^2}{x^2-2}} = \ell = +\infty$, we can conclude a contradiction. This is because the function $x \mapsto \frac{x^2}{x^2}$ $\frac{x^2}{x^2-2}$ takes values in $(-\infty, 0)$ for $x < \sqrt{2}$. It is impossible that $\lim_{x\to\sqrt{2}-\frac{x^2}{x^2-}}$ $\frac{x^2}{x^2-2} \in (0,\infty].$

(iv): The limit is $-\frac{1}{2}$ $\frac{1}{2}$. We first split the problem to several easier subproblems. Note

$$
\frac{\sqrt{1+2x} - \sqrt{1+3x}}{x+2x^2} + \frac{1}{2} = \frac{\sqrt{1+2x} + \sqrt{1+3x} - 2}{(1+2x)(\sqrt{1+2x} + \sqrt{1+3x})} + \frac{2x}{1+2x}
$$

The problem is solved if we can show:

(A)
$$
\lim_{x \to 0+} \frac{\sqrt{1+2x}-1}{(1+2x)(\sqrt{1+2x}+\sqrt{1+3x})} = 0
$$

(B)
$$
\lim_{x \to 0+} \frac{\sqrt{1+3x}-1}{(1+2x)(\sqrt{1+2x}+\sqrt{1+3x})} = 0
$$

(C)
$$
\lim_{x \to 0^+} \frac{2x}{1+2x} = 0
$$

(A): Let $\epsilon > 0$. Take $\delta = \epsilon$. Note that $0 < \epsilon$ √ $1 + 2x - 1 \leq 2x$ for $x > 0$. It follows that

$$
0 \le \frac{\sqrt{1+2x} - 1}{(1+2x)(\sqrt{1+2x} + \sqrt{1+3x})} \le \frac{2x}{2} < \epsilon
$$

for x with $0 < x < \delta$.

(B): is the same with (A). Observe that $0 <$ √ $\overline{1+3x} - 1 \leq 3x$ for $x > 0$.

(C): Let $\epsilon > 0$. Take $\delta = \epsilon$. Then for x with $0 < x < \delta$, we have $0 \le \frac{2x}{1+2x} \le \frac{2x}{2} < \epsilon$.

Q3. Let $N \geq 2$ be a natural number and let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^N$ for all $x \in \mathbb{R}$. Show by definition that f is continuous but not uniformly continuous.

Solution. (f is continuous): Pick any $x_0 \in \mathbb{R}$. We show that f is continuous at x_0 . Note on $[x_0 - 1, x_0 + 1]$, $|x|$ is bounded by some M. Let $\epsilon > 0$. Take $\delta = \min(\epsilon, 1)$, then for x with $|x-x_0| < \delta$, we have $x \in [x_0-1, x_0+1]$, so $|x| \leq M$, so by the assumption $N \geq 2$:

$$
|x^{N} - x_0^{N}| = |x - x_0| |x^{N-1} + x^{N-2}x_0 + \dots + x_0^{N-1}|
$$

By triangle inequality:

$$
|x^N - x_0^N| \le |x - x_0| (NM^{N-1}) \le \epsilon (NM^{N-1})
$$

Hence f is continuous on \mathbb{R} .

(f is not uniformly continuous on \mathbb{R}): Suppose on the contrary that f is uniform continuous on R. Let $\epsilon = 1$. Then there exists $\delta > 0$ such that for all $x, y \in \mathbb{R}$ with $|x - y| < \delta$, we have $|x^N - y^N| < 1.$

For $n \in \mathbb{N}$, put $x_n = n + \delta/2$, $y_n = n$. It is clear that $|x_n - y_n| < \delta$ for all n, we will prove that there exists *n* such that $|x_n^N - y_n^N| > 1$ which will be a contradiction.

By binomial theorem, $x_n^N \ge n^N + n^{N-1} \frac{\delta}{2}$, so $x_n^N - y_n^N \ge n^{N-1} \frac{\delta}{2}$. The RHS $\to \infty$ as $n \to \infty$, so there exists *n* such that $|x_n^N - y_n^N| = x_n^N - y_n^N > 1$.

Q4. Let $\emptyset \neq A \subset \mathbb{R}$ and $f, g : A \to \mathbb{R}$. By virtue of definition, prove or disprove for each of the following assertions

- (i) If f, g are continuous then so is fg .
- (ii) If f, g are uniformly continuous then so is fg .

Answer the same question again if $A = (0, 1)$.

Solution. (i) The assertion is true. For $\epsilon_0 := 1$, there exists $\delta' > 0$ such that for x with $|x-x_0| < \delta'$, we have $|f(x) - f(x_0)| < 1$, so $f(x_0) - 1 < f(x) < f(x_0) + 1$. Therefore $f(x)$ is bounded by some $M > 0$ on $V_{\delta''}(x_0)$.

Pick any $x_0 \in A$. Let $\epsilon > 0$. Then there exists $\delta'' > 0$ such that for x with $|x - x_0| < \delta''$, we have $|f(x) - f(x_0)| < \epsilon/2M$ and $|g(x) - g(x_0)| < \epsilon/2$.

Take $\delta = \min(\delta', \delta'')$. For $x \in A$ with $|x - x_0| < \delta$, we have

$$
|f(x)g(x) - f(x_0)g(x_0)| \le |f(x)| |g(x) - g(x_0)| + |g(x_0)| |f(x) - f(x_0)| < \epsilon
$$

(ii). The assertion is not true. Take $A = \mathbb{R}$, $f(x) = g(x) = x$. Then Q3 showed that fg is not uniformly continuous continuous on \mathbb{R} . But it is clear that f, g are uniformly continuous on \mathbb{R} .

If $A = (0, 1)$, then (i) is still true. We will prove that in this case (ii) is also true.

Consider $\epsilon_0 := 1$. There exists $\delta > 0$ such that for $x, y \in A$ with $|x - y| < \delta$, we have $|f(x) - f(y)| < 1$ and $|g(x) - g(y)| < 1$.

Because A is bounded, there are finitely many $x_1, \ldots, x_N \in A$ such that

$$
\bigcup_{i=1}^{N} V_{\delta}(x_i) = \bigcup_{i=1}^{N} (x_i - \delta, x_i + \delta) \supset (0, 1)
$$

On each $V_{\delta}(x_i)$, f, g are bounded by some $M_i > 0$, i.e. $|f(x)| < M_i$ and $|g(x)| < M_i$ for all $x \in V_{\delta}(x_i)$. (Take $M_i = |f(x_i)| + 1$, then for all $x \in V_{\delta}(x_i)$, $|f(x)| - |f(x_i)| \leq |f(x) - f(x_i)| < 1$) Let $M = \max(M_i)$, we have f, g are bounded by M on A.

Let $\epsilon > 0$. By uniform continuity of f, g, there exists $\delta' > 0$ such that for all $x, y \in A$ with $|x - y| < \delta', |f(x) - f(y)| < \epsilon/2M$ and $|g(x) - g(y)| < \epsilon/2M$.

For $x, y \in A$ with $|x - y| < \delta'$, we have

$$
|f(x)g(x) - f(y)g(y)| \le |f(x)| |g(x) - g(y)| + |g(y)| |f(x) - f(y)| < \epsilon
$$

Hence fg are uniformly continuous on A .