
MATH3310 HW1 Sketch of Solution

February 23, 2021

1. (a) the integrating factor = e
∫

2
x = x2

x2
dy

dx
+ x2 · 2y

x
= x2 · 10x2 + 5x+ 1

x

=⇒ x2y =

∫
(10x3 + 5x2 + x)dx

=
5

2
x4 +

5

3
x3 +

1

2
x2 + C

=⇒ y =
5

2
x2 +

5

3
x+

1

2
+
C

x2

Substituting y(1) = c > 0, it yields C = c− 14
3 .

(b) Consider the homogeneous solution of

−2
d2y

dx2
+ 3y = 0

By standard techniques from ODE (i.e. let the integrating factor to
be dy

dx ), we should obtain

y = α1 exp

(√
3

2
x

)
+ α2 exp

(
−
√

3

2
x

)
For the non-homogeneous solution, we have y = Ax2+Bx+C. Using
the given conditions and comparing coefficients, we have

A = 5

B =
38

3

C = −11

3

α1 = −
13
√

3
2 + 38

3 exp(−
√

3
2 )√

3
2 (exp(

√
3
2 ) + exp(−

√
3
2 ))

α2 =

38
3 exp(

√
3
2 )− 13

√
3
2√

3
2 (exp(

√
3
2 ) + exp(−

√
3
2 ))

1



2. Let

g(x) = f(x)− (

N∑
j=0

aj cos(jx) +

N∑
j=1

bj sin(jx))

We claim that
∫ 2π

0
g(x) sin(kx)dx = 0 for any k = 1, 2, .., N . Argue

this by contradiction, assume that
∫ 2π

0
g(x) sin(kx)dx = A 6= 0 for

some k, then we define that

h(x) = g(x)− A

π
sin(kx)

So we have∫ 2π

0

h2(x)dx =

∫ 2π

0

g2(x)dx+
A2

π2

∫ 2π

0

sin2(kx)dx− 2A

π

∫ 2π

0

g(x) sin(kx)dx

=

∫ 2π

0

g2(x)dx− A2

π
<

∫ 2π

0

g2(x)dx

However, by the construction of aj , bj , we know that∫ 2π

0

h2(x)dx ≥
∫ 2π

0

g2(x)dx

We get the contradiction, so
∫ 2π

0
g(x) sin(kx)dx = 0, and we get bk =

1
π

∫ 2π

0
f(x) sin(kx)dx for k = 1, 2, ..., N ; similarly a0 = 1

2π

∫ 2π

0
f(x)dx,

ak = 1
π

∫ 2π

0
f(x) cos(kx)dx for k = 1, 2, ..., N .

3. (a) Let x′ = πx
L , then using integration by substition, you should have

the conclusion.

(b)

bn =
1

3

∫ 3

−3
(c1x+ c2|x|) sin

(nπx
3

)
dx

=
c1
3
· (− 3

nπ
)

∫ 3

−3
xd(cos

nπx

3
)

= − c1
nπ
{[x cos(

nπx

3
)]3−3 −

∫ 3

−3
cos(

nπx

3
)dx}

= − c1
nπ

[6(−1)n − 3

nπ
· sin(

nπx

3
)|3−3]

=
6c1
nπ

(−1)n+1

a0 =
1

6

∫ 3

−3
(c1x+ c2|x|)dx

=
3c2
2

2



an =
1

3

∫ 3

−3
(c1x+ c2|x|) cos(

nπx

3
)dx

=
2c2
3
·
∫ 3

0

x cos(
nπx

3
)dx

=
2c2
3
· 3

nπ

∫ 3

0

xd(sin(
nπx

3
))

=
2c2
nπ
{[x sin(

nπx

3
)]|30 −

∫ 3

0

sin(
nπx

3
)dx}

=
6c2
n2π2

((−1)n − 1)

=

{
0, if n is even
−12
(nπ)2 , if n is odd

Thus, f(x) = 3c2
2 +

∑∞
n=1

6c1(−1)n+1

nπ sin
(
nπx
3

)
+
∑∞
n=1

−12
(2n−1)2π2 cos( (2n−1)πx

3 )

4. By standard derivation, we have the general solution

u(x, t) =

∞∑
n=1

Cn exp

(
−8n2π2t

16

)
sin
(nπx

4

)
If you are curious about the derivation, you may refer to this entry: https:
//en.wikipedia.org/wiki/Heat_equation#Solving_the_heat_equation_

using_Fourier_series

By comparing coefficients, it yields

u(x, t) =5 exp

(
−8(82)π2t

16

)
sin (2πx)

− 5 exp

(
−8(202)π2t

16

)
sin (5πx)

+ 10 exp

(
−8(322)π2t

16

)
sin (8πx)

5. Let u(x, t) admits a full Fourier series. Since u(0, t) = u(2π, t) = 0,
thus u(x, t) is found to be only a Fourier Sine series. i.e. u(x, t) =∑∞
k=1 Tk(t) sin(kx). Note that

ut−uxx =

∞∑
k=1

T ′k(t) sin(kx)+

∞∑
k=1

k2Tk(t) sin(kx) = 2t sin(nx)+t2 sin(mx)

By comparing coefficients, we have

T ′n(t) + n2T1(t) = 2t

T ′m(t) +m2Tm(t) = t2

3

https://en.wikipedia.org/wiki/Heat_equation#Solving_the_heat_equation_using_Fourier_series
https://en.wikipedia.org/wiki/Heat_equation#Solving_the_heat_equation_using_Fourier_series
https://en.wikipedia.org/wiki/Heat_equation#Solving_the_heat_equation_using_Fourier_series


Solving the ODEs, we have

Tn(t) =
2t

n2
− 2

n4
+ C1e

−n2t

Tm(t) =
t2

m2
− 2t

m4
+

2

m6
+ C2e

−m2t

Using the initial condition, we have C1 = 2
n4 + 2, C2 = 1− 2

m6 . Thus,

u(x, t) = [
2t

n2
− 2

n4
+(

2

n4
+2)e−n

2t] sin(nx)+[
t2

m2
− 2t

m4
+

2

m6
+(1− 2

m6
)e−m

2t] sin(mx)

6. (a)

f̂(k) =

∫ ∞
−∞

e−a|x|e−ikxdx

=

∫ 0

−∞
e−(ik−a)xdx+

∫ ∞
0

e−(ik+a)xdx

= − 1

ik − a
+

1

ik + a

=
2a

a2 + k2

(b) Applying Fourier Transform with respect to x, we have

ût = −k2û

Thus we have, by solving this ODE,

û = C(k)e−k
2t

for some coefficient function C(k). Then apply Fourier Transform to
the initial condition and result from (a), we have

û(k, 0) =
2a

a2 + k2

So we have C(k) = 2a
a2+k2 , hence the solution to the equation after

Fourier Transform is

û(k, t) =
2a

a2 + k2
e−k

2t

Applying inverse Fourier Transform, we have

u(x, t) =
a

π

∫ ∞
−∞

e−k
2t+ikx

a2 + k2
dk

Another way to express the solution is by convolution. We can see
û to be a product of 2a

a2+k2 and e−k
2t. By standard computation, we
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find the inverse Fourier Transform of φ̂(k, t) = e−k
2t to be φ(x, t) =

1√
4πt

e−
x2

4t . So we have that

û(k, t) =
2a

a2 + k2
e−k

2t = ϕ̂(k)φ̂(k, t)

Using the convolution property of Fourier Transform, we have

u(x, t) =

∫ ∞
−∞

ϕ(x− y, t)φ(y)dy

=
1√
4πt

∫ ∞
−∞

e−
(x−y)2

4t e−a|y|dy

=
1√
4πt

∫ ∞
−∞

e−
(x−y)2

4t −a|y|dy

In this way, we don’t need to find the Fourier Transform of the initial
condition function explicitly, namely C(k) or ϕ̂(k).
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