MATH3310 HW1 Sketch of Solution

February 23, 2021

1. (a) the integrating factor = ¢/ 7 = 22
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Substituting y(1) = ¢ > 0, it yields C' = ¢ — .
(b) Consider the homogeneous solution of
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By standard techniques from ODE (i.e. let the integrating factor to

be %), we should obtain
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For the non-homogeneous solution, we have y = Ax?+ Bz +C. Using
the given conditions and comparing coefficients, we have
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2. Let
N N
g(x) = f(z) — (Z a; cos(jx) + Z b;sin(jz))
i=0 =1

We claim that fo% g(x)sin(kz)dr = 0 for any k = 1,2,.., N. Argue

this by contradiction, assume that fOZﬂ g(x)sin(kx)dz = A # 0 for
some k, then we define that

h(z) = g(x) — %sin(kx)

So we have
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However, by the construction of a;,b;, we know that
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h?(z)dx > / g*(x)dx
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We get the contradiction, so fOQﬂ g(x) sin(kx)dz = 0, and we get by, =
1 027T f(z)sin(kz)dz for k = 1,2, ..., N; similarly ag = 5= fo% f(z)dz,
ap = %fo% f(x)cos(kx)dx for k =1,2,...,N.

(a) Let 2’ = 7%, then using integration by substition, you should have

the conclusion.
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)0, if n is even

N ﬁ, if n is odd
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Thus, f(.I) = 372+Zn:1 % sin (T)+Zn:1 (2n—%§27r2 COS(( 3 ) )

. By standard derivation, we have the general solution

u(z,t) = i Cp exp (_8??2t> sin (?)

If you are curious about the derivation, you may refer to this entry: https:
//en.wikipedia.org/wiki/Heat_equation#Solving_the_heat_equation_
using_Fourier_series

By comparing coefficients, it yields

u(z,t) =5 exp (‘8@”%) sin (27z)

—8(2 2\.2
— 5exp (8(106)7rt) sin (5bmz)

—8(32%)m’t
+ 10exp ((16)7T> sin (87x)

. Let u(x,t) admits a full Fourier series. Since u(0,t) = u(27,t) =
thus wu(z,t) is found to be only a Fourier Sine series. i.e. u(x,t) =
> pey Ti(t) sin(kx). Note that

Up— Ugy = Z Ty (t) sin(kz) + Z E*Ty(t) sin(kx) = 2t sin(nzx) +t2 sin(ma)
k=1 k=1

By comparing coefficients, we have
T (t) +n’Ty(t) = 2t
T (t) + m2T, (t) = t2
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Solving the ODEs, we have
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Using the initial condition, we have C; = % +2,0,=1-— % Thus,
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u(z,t) = [ﬁ_ﬁ—’—(ﬁ—i_z)e ) sm(nm)—l—[ﬁ—m—kﬁ—l—(l—ﬁ)e " sin(mx)
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(b) Applying Fourier Transform with respect to x, we have
= —k*
Thus we have, by solving this ODE,
@ = C(k)e ¥t

for some coefficient function C(k). Then apply Fourier Transform to
the initial condition and result from (a), we have

2a

W0 =

So we have C(k) = zz22+7akz’ hence the solution to the equation after
Fourier Transform is
2& _ k2t

k) = 5 e

Applying inverse Fourier Transform, we have

a o) e—k2t+ikx
ulz,t) =2 / e
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Another way to express the soluti02n is by convolution. We can see
1 to be a product of ﬁ and e~*"*. By standard computation, we



a:2
L_o—% . So we have that
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find the inverse Fourier Transform of ¢(k,t) = e to be oz, t) =

2a

u(k,t) = meszt = p(k)d(k, 1)

Using the convolution property of Fourier Transform, we have

u(z,t) = /OO ez —y,t)o(y)dy
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In this way, we don’t need to find the Fourier Transform of the initial
condition function explicitly, namely C(k) or ¢(k).




