4 Analytical methods (Part 1)

4.1 Fourier series/Fourier expansion

In this section, we are going to present one of the most powerful analytical methods —

Fourier series. Before doing that, let us first recall some complex notations.

Complex numbers. Let ¢ = v/—1. For a complex number z = a + 1 b, its conjugate is

Z =a —1b, and its magnitude is
|z| = Va2 + b2 =+/2z2Z.
Complex functions. f(z) is called a complex function, if we can write it in the form

f(x) = fi(z) + i fo(2)

where fi(x) and fa(x) are two real functions. The conjugate of f(x) is the complex
function f(z) = fi(x) —i fo(x). We shall often use the relations

e =cosr+isinr, e%=e " =cosx—isinc.

Definition 4.1 (Orthogonal functions). Two complex functions f(x) and g(x) are

said to be orthogonal on the interval [a,b] if the following holds

(f.9) = / F(@)g()de = 0

where g(z) is the conjugate of g(z). For example, {e*2}2°  is an orthogonal sequence

of functions on [—m, 7] or [0, 27], since
. . 27.(- . —_—
(e'ke eilry = / ekreiledy =0 YV I#£k
0
In fact,

2w o 2 ) ) 1 ) o
/ ezk’xeilxdl, — / ezkxe—zlwdx = - ez(k—l)a: =0.
0 0 i(k —1) 0

Similarly one can verify that the following three sequences
{coskx}pe,, {sinkz}pe,, {coskzx,sinkx}’,
are all orthogonal sequences of functions on [—m, 7] or [0, 27].
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Definition 4.2 (Periodic functions). A function f(x) is called a periodic function
with period d if
flx+d)= f(z) Vaz.

For example, e**_ cos kz and sin kx are all periodic functions with period 27. But
cos2kx, sin2kx
are periodic functions with period 27 and also 7.

Now, let us discuss the Fourier series. The idea of the Fourier series is to expand
a given function f(z) (maybe discontinuous) in terms of the cosine and sine functions.

We will consider the following two types of expansions:

flx) = Z k€™ =co+ o167 + 1€ + c_geT P 4 g 4 - (4.1)
k=—00
f(z) = ag+ aycosz+ bysine + agcos 2z + by sin 2z + - - - (4.2)

Note that the right hand sides of (4.1) and (4.2) are all functions with period of 2. So
function f(x) must be also a function with period 27. Because of the periodicity, we can
consider any interval of length 27 for the Fourier expansions (4.1) and (4.2). We often
take [—m, 7| or [0,27]. In our subsequent discussions, we will always use the interval
[—7, 7).

Now suppose f(z) is a function with period 2w, i.e., f(z + 2m) = f(x) Vx . In this
case, the graph of f(z) in any interval of length 27 will be repeated in its neighboring

interval of length 27.

Real Fourier series

We first discuss how to find the Fourier series (4.2).
We need to find all the coefficients {ax} and {b;}. Recall that {coskz,sinkz} are

orthogonal on [—m, 7|, namely for any k # [,

/ cos kx cos lzdx = 0, (4.3)
/ cos kx sinlzdr = 0, (4.4)
/ sin kz sinladz =0 . (4.5)
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Find the coefficient a; in (4.2). Multiply both sides of (4.2) by coskz, integrate
then over [—m, 7| and use the orthogonality (4.3)-(4.5). We have

/ f(z) cos kxdx = / ay cos kx cos kxdx.

—T

From this we obtain

1 ™
ar = —/ f(z) cos kxdx (4.6)
ﬂ— —Tr
since - " ok
/ cos? kxdr = / Wd:c =7.

Find the coefficient b; in (4.2). Multiply both sides of (4.2) by sin kz, integrate then

over [—m, 7| and use the orthogonality (4.3)-(4.5). We have

/ f(z)sin kzdx = / b sin kx sin kxdzx.

—TT
From this we obtain

by = %/ﬂ f(z)sin kadz . (4.7)

Find the coefficient ay in (4.2). Multiply both sides of (4.2) by the constant 1, then

integrate over [—, 7| to obtain
/ f(x)dx = / apdz,

1 ™
o = o /_7r f(x)dx, (4.8)

that is, the first coefficient a is the average of f(x) on [—7,7].

therefore,

In summary, we can expand f(z) as follows:
f(z) = ag + aj cosx + by sinz + ag cos 2x + by sin 2z + - - -

where all the coefficients are given by

w = o [ S,

1 s
ar = —/ f(x) cos kxdx |
™ —T

1 s
by = —/ f(x)sin kzdz .
T J-n
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Complex Fourier series

Now we shall discuss how to find the complex Fourier series (4.1), namely,

oo

fl@)= > ae™ . (4.9)

k=—o00

We need to find all the coefficients {c;}. By Definition 3.1, we know that {¢**} are

orthogonal on [—m, 7|, namely for any k # [,

(eikz7eila¢) — / eikme—ilmdx =0 \V/k ?é L

—T

Thus multiply both sides of (4.9) by e~ and use the orthogonality of {e?**}, we obtain

v iy
/ f(q:)e’ikxda: = / cpe*e ke
—T v

or
k= % /:T f(z)e ™*dy . (4.10)
That is, the Fourier series is
f(z) =co+ 1€ 4+ 167" 4 0?4 o peHT 4. (4.11)
with coefficients ¢, defined by (4.10).

Remark 4.1. Note that in the Fourier series (4.11), the function f(x) can be a real
function. For a real function, one can choose the real Fourier expansion (4.2) or the
complex form (4.11).

Think about why we can choose the complex form (4.11) for a real function. Any
contradiction ?

4.2 Relation between the real and complex Fourier series

There are close relations between the real and complex Fourier series.

(a) The coefficients ¢ in the complex form (4.11) can be derived from the coefficients

ar and by, in the real form (4.2). In fact, we know

™ = coskx +isinkx, e "™ = coskx —isinkz. (4.12)
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Multiply both sides of the second equation by f(x) and integrate over [—7, w]. We

obtain

/7r f(x)e *dy = /7r f(z) cos kxdx — @'/W f(z)sin kzdz |

That implies

QCk = ar — Zbk . (413)
This can be written as ,
1 1
Cr = §ak — §bk .

Similarly, we can derive from the first equation of (4.12):

1 ?
C_ = §ak + §bk .

(b) The real coefficients a; and by in (4.2) can be recovered from the complex coeffi-

cients ¢, in (4.11). Using the formula

coskx = %(eikx + 6_“”), sin kr = l,(eikx . e—ikm) ‘

21
Therefore
1 ™
ap = — f(z)coskxdr = ¢, + c_y, |
™ —Tr
1 /" . 1
by = — f(z)sinkzdr = = (c_x — c).
T ) . i

4.3 Examples of Fourier series
We now give some examples to illustrate the calculations of the Fourier series.

Example 4.1. Find the Fourier series of f(x) = cos®x.

Solution. By definition, we have

1 [T 1 (™14 cos2z 1
aog/_ﬂf(x)dx% _ﬂTd¢7€*§,

1 ™ 1 ™ 0, k 2
ap = _/ f(x)coskwdr = — (1 + cos2x) cos kxdx = 7

T J_x 2 - %7 k:27

1 [7 1 ["
b = —/ f(z)sin kzdr = —/ (14 cos2z)sinkxdr =0 .
) . 2 J_.
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Therefore the Fourier series of f(z) is

This is a well-known formula.

e Try the Fourier expansions of the functions sin®z, cos 2z, sinz + cosx, - - .

Example 4.2. Find the Fourier series of f(x) = d(x) on [—m,w|. This function is
called a delta function and it is one of the most important functions used in physics and

engineering. The delta function has the following properties

| s@i@is=g0) Vg€ -nx
and
d(z) =0 forany z #0.

Solution. By definition, the Fourier coefficients are

1 (7 1
(IOZ% 7ﬂ5(l’)d$:% s
1 [7 1 1
ak:—/ d(z)cos kxdr = —cos0 = — |
TJ_, T T
1 [7 )
bk:—/ d(z)sinkxdr =0,
™ —T
therefore
IR
i(z) = 7 + = ;coskx , x € [—m, T (4.14)

In the complex case,
1 [7 & 1
= — - J)d = —
Ck o /ﬂ f(..'L‘)e x o )
so we have

é(zr) = — Z et xe [-m . (4.15)

We have from (4.15) that

T
1 1
:%—l—;;coskx,



this is the same as (4.14).
Can the series (4.15) really reflect the behavior of §(z) ?

Let us consider the partial sum of (4.15):

N N

PN((L’) _ § ezkw _ _e—sz § ez(N—l-k)m
2
=N =—N
2N
— e*le § ezk:p
k=0
_ i(2N+1)z
- efiNac 1 €
N 1 —ei®

t(N+3)z _ —i(N+3)z

elx/2 _ p—iz/2
sin(N + )z

sinirz
Then study the following questions

1. For each given N, show that

1
lim Py () = 2(N + 3).

So Py(z) will tend to infinity at x = 0 when N goes larger and larger.

2. Plot the figure for Py(z) using Matlab; and calculate the integral

i ’ Py (z) f(x)dz

2 ) .

approximately for N = 10, 20, 30,40, 50, 100. Observe if Py(x) satisfies that

if so, 5= Py(z) approximates 6(x).

Odd and even functions. A function f(x) is called an even function if it satisfies

f(=2) = f(z), Va.

And it is called an odd function if it satisfies

f(=z) ==f(z), V.

It is easy to check the following properties:
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For any odd function f(z) o

| e

For any even function f(z) o

n [-

7, 7], we have

n [—m, 7|, we have

| t@is=2 [ s

Example 4.3. Find the Fourier series of the odd function

fl)=2x, ze [—-mmn].

Solution. The Fourier coefficients are

_ iﬁ / : f()da

— l /7r f(z)coskzdr =0 (why 7)
T™J_n

Finally for the coefficients by, we have

1 [7 2 [T
= —/ f(z)sin kzdr = —/ x sin kzdx
T J_x ™ Jo

By integration by parts, we obtain

=0 (why?)

2 [T 2 ™ 2cosk
b, = — cos kzdr — —xcoskx| = — cosm
km k 0
that is,
2 2 2
by =2, by=—=, by3=—,- by = (—1)F 1=
1 y 2 9’ 3 3’ ) k ( ) k
so the required Fourier series is
in 2 in 3
r="Dbysine +bysin2x + - -+ = 2(sinz — st Ty sm3 - ), —m<z<T.
Remark 4.2. Note that the Fourier series above does not converge at x = —m,m, as the

series 15 0 at x = —m and .
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4.4 Sine series and cosine series

Every function f(z) can be written as a sum of an even and an odd function, i.e.,

f(x) = fe(x) + fol),

with
f(z) + f(=x)

f@) — f(=x)
5 : :

fe(z) = 9

folz) =

A very important observation:

The Fourier series of an even function has only cosine terms, since
1 ™
by = — f(z)sinkzdr =0 .
™ —T
The Fourier series of an odd function has only sine terms, since

1 ™
ak:—/ f(x)coskxdr =0 .
™ —T

Example 4.4. The function f(x) =1 is known on the half-period 0 < x < 7. Find its
Fourier series when

(a) f(z) is extended to (—m, ) as an even function;
(b) f(x) is extended to (—m,7) as an odd function.
Solution. By definition of even and odd functions, we have

(a) f(z) is an even function,

1 [7 1 [7
aoz—/ f(:z:)d:v:—/ lde =1,
2 J_, T Jo

1 [" 2 [T
ar = —/ f(x) cos kxdxr = —/ cos kxdxr =0 ,
TJ . T Jo

1 ™
by = — f(z)sinkzdr =0,

™

therefore the Fourier series of f(x) is
flx)=1, —-wm<z<m.

This recovers the original constant function.
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(b) f(z) is an odd function,
a = o B z)dr =0,
1 s
ak——/ f(z)coskxdxr =0,
™ —T

1 [" 2 [T
b = —/ f(z)sin kzdx = —/ sin kzdx
T ), 7 Jo

2 0, kiseven

=~ (=1 =1) =
kﬂ(( =) A kisodd |

so the Fourier series of f(x) is

4 (sinx sin3x sinbzx

f@:_{ 1 "3 T

This is very different from the original constant function.

+ --}, - <x<T.

4.5 Some properties of Fourier series

Introduce

E(Ag, Ay, -+ Ay, Bo, By, , By) :/ {f(x) — Y (Apcoskx + By sinkx)}Qdm.
o £

=0

Then we claim that

The best trigonometric approximation of f(z) on [—m, 7| in the mean-

square sense is its Fouries series, i.e.,

E<a07a17"' 7a'rl7b07b17"' 7bn) :VAmBinelRl E(A(]?Al?"' JA'IUBO?Blu"' 7Bn)
ksDPk

where {a;} and {b;} are the Fourier coefficients of f(z).

To see this, let us assume {Ay, B }%_, is a minimizer of E, then

OE

2 T) — A coskx + Birsinkz) } cos kxdz
=2 U@ It psin b))}

=2 {f(z) — Ay coskz} cos kadx

=2 f(z)coskxdr — 2w A =0,
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therefore L g
Ay = —/ f(z) cos kxdr = ay,
™ —T

for k # 0. Similarly we have

1 ™
AOZ%/ﬁf(x)dx:ao,

and

1 s
Bk:—/ f(z)sinkzdr = by, , Vk .
™ —T

This indicates that the minimizer {Ag, By }}_, is the Fourier coefficients of f(x). f

e Think about why we can claim what we get is the minimizer, not the maximizer.

Think about the difference between E({A;},{B;}) and E({a;},{b:}).

Our second claim is:

Let F,(z) be the truncated Fourier series
F.(x) =ap+ajcosx +bysinz + -+ + a, cosnz + b, sinnz |
then we have

/W F2(z)dr < _Tf f(z)dx .

—T

First we have by using the orthogonality that

/_W (f(2) — Fu(2)) Fa(z)dz

— / f(z) Z (ak cos kx + by sin kx)dx — / { Z ag cos kx + by, sin kx}%ﬂ
- T K=0

k=0

=0

thus

Py =

—T —T
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i

e Think about the interesting question. If we define a sequence {«,} by

Qp = / Fg(l’)dl’7

-7

then the sequence {a,}22 , must be monotonely increasing.
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4.6 Solution of the Laplace’s equation

In this section, we are going to apply the Fourier series to solve an important differential

equation, i.e., the Laplace’s equation:

Pu  0*u
—+ — = Q 4.1
with the boundary condition
u(z,y) = uo(z,y), (x,y) € 0N (4.17)

where () is the unit circle, i.e.,
Q={(z,9); 2*+y*> <1}
Since 2 is a circle, it is easier to use the polar coordinates:
xr=rcosf , y=rsinf.
Under the transformation, we have
u(z,y) = u(rcosf,rsinf) = w(r,0).
Further, the domain 2 and the equation (4.16) are transformed into
w=A{(r0); 0<r<l1l, —n<f<mn}

and

10, Ou 1 0%u

—_—— —_— —_—— . 4.].

r(f)r(rf)r)—i_ﬂ({)@? 0 (4.18)
The boundary condition (4.17) changes into

w(1,0) = wp(cosd,sind). (4.19)

We are now going to find the solutions of (4.18). First, we can easily check that the
following functions
1, rcosf, rsinf, r?cos26, r*sin26, - -- (4.20)

are all solutions of (4.18). For example, we take w(r, ) = r* cos k6 for k > 2, then

w, = krf¥ L cos ko |
10

;E(rwr) = k*rF "2 cos kb |
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while ]
— Wog = —k2r* 2 cos kb |
r

therefore w(r,0) = r*coskf is a solution to the equation (4.18). Note that (4.18) is
a linear equation, so any combination of two solutions wy(r,0) and wsy(r,0) is still a
solution (why ?). Thus the following combination of the above special solutions is a

genernal solution:
w(r,0) = ag + a;7 cos @ + byrsinf + - - + apr® cos k@ + byr¥sinkf + - - - (4.21)

where a; and by are arbitrary constants.

But we have to determine the coefficients a; and b,. This can be done by using the

boundary condition (4.19). For this, we let 7 =1 in (4.21) and obtain
w(1,0) = ag+ a;cos@ + by sinf + - - - + ay cos k + by sin k@ + - - -

We know that w(1,0) = ug(cos d,sin ), so the coefficients aj and by, are nothing else but

the Fourier coefficients of ug, i.e.,

1 K

ag = — up(cos 8,sin 0)do (4.22)
2m J_
1 ™

ay = —/ uo(cos @, sinf@) coskfdd , k=1,2,--- (4.23)
™ —T
1 s

b = —/ up(cosf,sin @) sinkfdf , k=1,2,--- . (4.24)
™ —T

This indicates that w(r, ) in (4.21) is the desired solution of the boundary value problem
(4.18) with the coefficients a; and by given by (4.22)-(4.24).

Example 4.5. Find the solution of the following Laplace equation:

and
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4.7 Orthogonal functions

In this section, we introduce some further knowledge on orthogonal functions.

For a given positive function w(x) on [a, b], we define an inner product

b
(f.9). = / w(z) f(z) glz)dz

for any two real functions f(z) and g(z) on [a,b]. And w(z) will be called a weight

function. We will often use the following norm:

[ flle = {/abw«z:) fA(x) dm}é.

Definition 4.3 (Weighted orthogonal functions). Let f(x) and g(x) be two real

functions on [a,b]. f(x) is said to be orthogonal to g(x) with respect to the inner product
(e if (f,9)w = 0.

A sequence of functions {fr}32, is said to be orthonormal with respect to the inner
product (-, ), if the following holds:

(fm?fn)w:() vm?én

and each fi is unitary, i.e.,

[ fillo =1
e Check if function cos x is orthogonal to g(x) = sinx with respect to the inner product
(-, ) for w(z) =1, z, 22

e Verify that any sequence of orthogonal functions {gx}3>; on the interval [a,b] are

linearly independent.

Now we are going to demonstrate that

Any sequence of linearly independent functions {¢;}°, defined on

[a,b] can generate a sequence of functions {¢; };°, which are orthonor-

mal with respect to the inner product (-,-),.

Gram-Schmidt orthogonalization is one of such orthogonalizing techniques. Below

we introduce the Gram-Schmidt orthogonalization.
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Gram-Schmidt orthogonalization process.

Given a sequence {¢y}72, of linearly independent functions defined on [a, b], we are

going to construct a sequence of orthonormal functions {g}32, as follows:

0) Set
Go(x) = ¢o(x) -
Normalize go(x):
_ Gofx)
o]l

q(z)

1) Set
¢1(z) = ¢1(x) — aqg qo(x)
choose oy such that
b
@)= [ @) Bl =0
that gives, .
a0 = (9@ = [ wle) Gr()ala)ds.

Normalize ¢ (z):

@ (z)
@) = —=.

11|

k) Suppose qo, g1, - , qx are constructed such that

(¢,95)o =0 Vi#j and |glo=1.

We then construct gi,1 by

Ge1(2) = g () — {ak+1,0(_Io($) S Oék+1,qu(x)}
with
Qr1i = (Ghe1,0)w, 1=0,1,-+- k.

Normalize qx1: N
_ Ik+1 (z)
Gk 1]l

Qrt1()

Then the sequence {gx}32,, constructed above is an orthonormal sequence, i.e.,

(¢:9)o =0 Vi#j: |allw=1.
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Example 4.6. Given the sequence of polynomials

on the interval [—1, 1], use the Gram-Schmidt orthogonalization process to construct an
orthonormal sequence of polynomials, and write down the first three constructed polyno-

maals explicitly.

Solution (exercise). The three polynomials are

1 V3 Va5, 1
Pl(x):E$7P2($):W< —§>

Example 4.7. Check if the Chebyshev polynomials
To(z) =1, Ty(2) =z, Ty(x) = 22> — 1, Ts(z) = 42° — 3z
are orthogonal on [—1, 1] with respect to the weight function w(z) = 1/v/1 — x2.

Solution. Use the transformation x = cos6.

Example 4.8. Based on a given sequence of functions {¢;(x)}32,, which is orthogo-
nal with respect to the inner product (-,-),, use the Gram-Schmidt orthogonalization to

construct an orthonormal sequence of functions with respect to (-,-),. (exercise)

Example 4.9. Expand a given function f(z) on [a,b] in terms of a given orthogonal

sequence of functions {¢x(x)}52, with respect to the inner product (-, ).

Solution. Let
f(z) = a161(x) + azga(x) + azps(x) + - -
Think about how to find the coefficients {ay}. 4
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4.8 Fourier transform

Fourier transforms play a very important role in mathematics, physics and engineering.

4.8.1 Definition and examples

Recall that
e** = cos(kx) + i sin(kzx).
From this expression, we can easily see that the magnitude of k determines the intensity
of the oscillation of function exp(ikz), and k measures the frequencies of the oscillation.
To better understand the relation between the magnitude of k and the oscillation of

exp(ikz), , one may plot and compare the figures of sin 7z, sin 47z and sin 87z.

Definition 4.4. For a given function f(z) defined on (—o0,00), the Fourier transform

of f is a function J? depending on frequency:

f(k) = /_00 f(x)e ™*dy  —oo <k <o0. (4.25)

~

The inverse Fourier transform of f(k) recovers the original function f(x):
1 [~ .
flz) = 2—/ f(k)e*dk, —oo<x<o00. (4.26)
™ —0o0

Example 4.10. Find Fourier transform of the delta function f(x) = d(x).

Solution.
f(]{?) = / f(x)e " dy = / §(z)e ™ dr =1, for all frequencies k .

So the Fourier transform of the delta function is a constant function.

Example 4.11. Find the Fourier transform of the function:

1, |z|]<a
f(x) = square pulse =

0, l|z|>a

Solution.

~ o) ' a | 0
f(k):/ f(x)e_““da::/ o=k g — azka‘

e Think about whether this function f(k) makes sense at k = 0.
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Example 4.12. For a > 0, find the Fourier transform of the function:

e~ x>0

_eax7 r<0.
Solution. By definition, we have
f(]{?) :/ f<x>efzkzdx :/ efazfzkwdx +/ _ea:pfzkzdx
—00 0
1 1

B 2k
a+ik a—ik a2+ k2’

e Justify the above process yourself.

Example 4.13. Find the Fourier transform of

1, x>0

f(x) = sign function =
-1, z<0.

Solution. We have
AN w . w . 0 .
f(k) = / f(x)e **dy = / e~k dy 4 / —e Ry,
—00 0 —0o0
But what is e‘“‘””|8O ? Tt is difficult to know.

To solve this problem, we consider the function

e—ax

, x>0

)
— e, <0

it is easy to see that

lim fo(z) = f(2),

a—0t

then we can compute as follows:
f(k) = / f(x)eikxdx:/ lim+ fa(z)e ™ dy
—00 — o0 a0
o , —2ik
_ : —ikx 1
= g / alw)em e = Tim oo
-2 2
ko ik
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Example 4.14. Find the Fourier transformation of the constant function
flz)=1, Ve (—oo0,00).

Solution. We have

0 0 0
f(k) = / ““Cdx—/ e”“:dx—i—/ e M dy

0
— (}i}%ﬂ{/ —az, 1kxdx_|_/; eaxefikxdx}

. 1 0 kE#0
= hm{ , }:
a—0+ a—l—zk; a— 1k ? k=0

What is f(0) ? Note that f(k) looks like a delta function. Let f(k) = ad(k), then by

the inverse Fourier transform we have

L= o) =5 [ Fmetdn = 5

SO

or

4.8.2 Two identities for Fourier transforms

(1) For a function f(x) on (—o00,00) and its Fourier transform f(kz), we have

27r/oo () [2da = /Oo Tk [2dk (4.27)

—00 —00

(2) The inner product of any functions f and g satisfies

27r/ f(z dx—/ f

where g(x) is the conjugate of g(x).

tQ)\
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Example 4.15. Check the relation (4.27) for the following function

e Y x>0

0, rz<0.

Solution. We have

27?/ |f(z)|*dr = 27‘(’/ e 2 dy = z,
- 0

- a
while - -
f(k;) :/ f(x)e’ikxdx :/ e~ @R Iy
—00 0
1

—azr—ikx ’00 o 1
0

a+ik’

a2 < dk < dk v
k d —= —_— _— -
/_oo ) de /_Oo la + ik|? /_oo a?+k?  a’

that verifies (4.27). Here we have used the transformation k = acosf/sinf. ¢

__a+ik;

therefore

4.8.3 Important properties of Fourier transform

This subsection discusses some more properties of Fourier transforms.

(1) One can directly verify from definition that for any complex number «,
af (k) = af(k).

(2) One can directly verify from definition that

—_— ~

f+g(k) = fk) +9(k).
(3) The Fourier transform of % is zkf(k), ie.,

df 0oz
1 (k) = ik f(k) .

To see this, we use

o) = % / T Fk) et dk

—00
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to obtain
df 1

Loy =5 / ik F(k)e= dk.

Comparing with definition

dz d:c
gives
df I
(k) = ik F (k)

(4) The transform of F(z) = [ f(z)dz is % + CH(k), ie.,

Fk) = == + Ca(k)

To see this, we use

or

%(F(az) +C) = f(z) VCER.

Taking the transform on both sides,
ik(F(k) +2C78(k)) = F(k) ,
this is , R
F(k) = % +C8(k) YCeR.
(5) The Fourier transform of F(z) = f(z — d) is e *f (k).

In fact, we have

F(k) —/OO F(x)e **dy

/ f(x —d)e " **dg
/ F(y)e Hwrdg

—e M f(h)
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(6) The transform of g(x) = e f(z) is f(k — d).

By definition, we have

R B I

o~

/ fl@)e ™ e = f(K) = flk —d) .

(7) The convolution of G and h is the function

:[%G@—ymwm%

u() = (G * b) ()

we often write

or
00

ulw) = (Gxh)(x) = [ Gla - y)hiu)dy.

— 00

We now show that

In fact, we have

u(k) = / ek dy = / / G(z —y)h(y)e *dydx
/ / G(x — y)h(y)e *drdy = / h(y) /OO G(x —y)e *dxdy

:/ h(y)e lkydy/ Gz e ™  de’  (let & —y = 2')
=G(k)h(k), —oo<k<oo.

4.8.4 Application of Fourier transform for differential equations

Fourier transforms can be applied to solve different types of differential equations. Here

we consider one example.

Consider the differential equation

—— +au=h(r), —co<z<00. (4.28)



In order to solve the equation, we apply the Fourier transform

u(k) = / h u(z)e ™ dx

o0

to each term of the equation to obtain

—(ik)*u(k) + a*u(k) = h(k) .

This gives R
- h(k)
k)= —">— 4.2
i) = (1.29)
Let G(x) be a function such that
~ 1
Gk)=———
then we know R
- h(k) o~
k)= ——= = G(k)h(k).
(k) = 40 = GkYA(K)
By the convolution property, the solution u(z) can be given by
u(z) = (G*h)(x) = / G(x —y)h(y)dy . (4.30)
To find G(x), we consider function f(z) = e~?*l. By definition, we have
fy = [ fae
oo 0
_ / 6—(a+ik)xdl,_’_/ e(a—ik)mdw
0 —00
1 . =00 1 . =0
- _ —(a+ik)z (a—ik)x
a + lk’e =0 a — ’Lk)e r=—00
1 1 2a
= — = :
a+ik  a—ik a®+k?
this shows o
1 1
%f(k) A+ k?
so we have .
— _— p—al
G(x) 5 ¢ :
Now we get from (4.30) that
1 oo
u(z) = 2—/ e~ Vh(y)dy, —oo <z < o0. (4.31)
a —0oQ

f

e Check if the function u(x) in (4.31) is indeed a solution to the differental equation
(4.28).
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