
August 7, 2012 21:04 c06 Sheet number 17 Page number 325 cyan black

6.2 Solution of Initial Value Problems 325

13. y′′ − 2y′ + 2y = 0; y(0) = 0, y′(0) = 1
14. y′′ − 4y′ + 4y = 0; y(0) = 1, y′(0) = 1
15. y′′ − 2y′ + 4y = 0; y(0) = 2, y′(0) = 0
16. y′′ + 2y′ + 5y = 0; y(0) = 2, y′(0) = −1
17. y(4) − 4y′′′ + 6y′′ − 4y′ + y = 0; y(0) = 0, y′(0) = 1, y′′(0) = 0, y′′′(0) = 1
18. y(4) − y = 0; y(0) = 1, y′(0) = 0, y′′(0) = 1, y′′′(0) = 0
19. y(4) − 4y = 0; y(0) = 1, y′(0) = 0, y′′(0) = −2, y′′′(0) = 0
20. y′′ + ω2y = cos 2t, ω2 �= 4; y(0) = 1, y′(0) = 0
21. y′′ − 2y′ + 2y = cos t; y(0) = 1, y′(0) = 0
22. y′′ − 2y′ + 2y = e−t ; y(0) = 0, y′(0) = 1
23. y′′ + 2y′ + y = 4e−t ; y(0) = 2, y′(0) = −1
In each of Problems 24 through 27, find the Laplace transform Y(s) = L{y} of the solution of
the given initial value problem. A method of determining the inverse transform is developed
in Section 6.3. You may wish to refer to Problems 21 through 24 in Section 6.1.

24. y′′ + 4y =
{
1, 0 ≤ t < π,
0, π ≤ t < ∞; y(0) = 1, y′(0) = 0

25. y′′ + y =
{

t, 0 ≤ t < 1,
0, 1 ≤ t < ∞; y(0) = 0, y′(0) = 0

26. y′′ + 4y =
{

t, 0 ≤ t < 1,
1, 1 ≤ t < ∞; y(0) = 0, y′(0) = 0

27. y′′ + y =

⎧⎪⎨
⎪⎩

t, 0 ≤ t < 1,
2− t, 1 ≤ t < 2,
0, 2 ≤ t < ∞;

y(0) = 0, y′(0) = 0

28. The Laplace transforms of certain functions can be found conveniently from their Taylor
series expansions.
(a) Using the Taylor series for sin t

sin t =
∞∑

n=0

(−1)nt2n+1

(2n + 1)! ,

and assuming that the Laplace transform of this series can be computed term by term,
verify that

L{sin t} = 1
s2 + 1 , s > 1.

(b) Let

f (t) =
{

(sin t)/t, t �= 0,
1, t = 0.

Find the Taylor series for f about t = 0. Assuming that the Laplace transform of this
function can be computed term by term, verify that

L{ f (t)} = arctan(1/s), s > 1.
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(c) The Bessel function of the first kind of order zero, J0, has the Taylor series (see
Section 5.7)

J0(t) =
∞∑

n=0

(−1)nt2n

22n(n!)2 .

Assuming that the following Laplace transforms can be computed term by term, verify
that

L{J0(t)} = (s2 + 1)−1/2, s > 1

and
L{J0(

√
t)} = s−1e−1/(4s), s > 0.

Problems 29 through 37 are concerned with differentiation of the Laplace transform.

29. Let

F(s) =
∫ ∞

0
e−st f (t) dt.

It is possible to show that as long as f satisfies the conditions of Theorem 6.1.2, it is
legitimate to differentiate under the integral sign with respect to the parameter s when
s > a.
(a) Show that F ′(s) = L{−tf (t)}.
(b) Show that F (n)(s) = L{(−t)nf (t)}; hence differentiating the Laplace transform corre-
sponds to multiplying the original function by −t.

In each of Problems 30 through 35, use the result of Problem 29 to find the Laplace transform
of the given function; a and b are real numbers and n is a positive integer.

30. f (t) = teat 31. f (t) = t2 sin bt

32. f (t) = tn 33. f (t) = tneat

34. f (t) = teat sin bt 35. f (t) = teat cos bt

36. Consider Bessel’s equation of order zero

ty′′ + y′ + ty = 0.
Recall fromSection 5.7 that t = 0 is a regular singular point for this equation,and therefore
solutionsmaybecomeunboundedas t → 0.However,let us try todeterminewhether there
are any solutions that remain finite at t = 0 and have finite derivatives there. Assuming
that there is such a solution y = φ(t), let Y(s) = L{φ(t)}.
(a) Show that Y(s) satisfies

(1+ s2)Y ′(s) + sY(s) = 0.
(b) Show that Y(s) = c(1+ s2)−1/2, where c is an arbitrary constant.
(c) Writing (1+ s2)−1/2 = s−1(1+ s−2)−1/2, expanding in a binomial series valid for s > 1,
and assuming that it is permissible to take the inverse transform term by term, show that

y = c
∞∑

n=0

(−1)nt2n

22n(n!)2 = cJ0(t),

where J0 is the Bessel function of the first kind of order zero. Note that J0(0) = 1 and that
J0 has finite derivatives of all orders at t = 0. It was shown in Section 5.7 that the second
solution of this equation becomes unbounded as t → 0.
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37. For each of the following initial value problems, use the results of Problem 29 to find
the differential equation satisfied by Y(s) = L{φ(t)}, where y = φ(t) is the solution of the
given initial value problem.
(a) y′′ − ty = 0; y(0) = 1, y′(0) = 0 (Airy’s equation)
(b) (1− t2)y′′ − 2ty′ + α(α + 1)y = 0; y(0) = 0, y′(0) = 1 (Legendre’s equation)

Note that the differential equation forY(s) is of first order in part (a), but of second order
in part (b). This is due to the fact that t appears at most to the first power in the equation
of part (a), whereas it appears to the second power in that of part (b). This illustrates that
the Laplace transform is not often useful in solving differential equations with variable
coefficients, unless all the coefficients are at most linear functions of the independent
variable.

38. Suppose that

g(t) =
∫ t

0
f (τ) dτ.

If G(s) and F(s) are the Laplace transforms of g(t) and f (t), respectively, show that

G(s) = F(s)/s.

39. In this problem we show how a general partial fraction expansion can be used to calculate
many inverse Laplace transforms. Suppose that

F(s) = P(s)/Q(s),

where Q(s) is a polynomial of degree n with distinct zeros r1, . . . , rn, and P(s) is a
polynomial of degree less than n. In this case it is possible to show that P(s)/Q(s) has
a partial fraction expansion of the form

P(s)
Q(s)

= A1

s − r1
+ · · · + An

s − rn
, (i)

where the coefficients A1, . . . ,An must be determined.
(a) Show that

Ak = P(rk)/Q′(rk), k = 1, . . . , n. (ii)

Hint:Oneway to do this is to multiply Eq. (i) by s − rk and then to take the limit as s → rk.
(b) Show that

L−1{F(s)} =
n∑

k=1

P(rk)

Q′(rk)
erkt . (iii)

6.3 Step Functions

In Section 6.2 we outlined the general procedure involved in solving initial value
problems by means of the Laplace transform. Some of the most interesting elemen-
tary applications of the transform method occur in the solution of linear differential
equations with discontinuous or impulsive forcing functions. Equations of this type
frequently arise in the analysis of the flow of current in electric circuits or the vibra-
tions of mechanical systems. In this section and the following ones, we develop some
additional properties of the Laplace transform that are useful in the solution of such
problems. Unless a specific statement is made to the contrary, all functions appearing
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However, if the actual excitation extends over a short, but nonzero, time interval,
then an error will be introduced by modeling the excitation as taking place instan-
taneously. This error may be negligible, but in a practical problem it should not be
dismissed without consideration. In Problem 16 you are asked to investigate this
issue for a simple harmonic oscillator.

PROBLEMS In each of Problems 1 through 12:
(a) Find the solution of the given initial value problem.
(b) Draw a graph of the solution.

1. y′′ + 2y′ + 2y = δ(t − π); y(0) = 1, y′(0) = 0
2. y′′ + 4y = δ(t − π) − δ(t − 2π); y(0) = 0, y′(0) = 0
3. y′′ + 3y′ + 2y = δ(t − 5) + u10(t); y(0) = 0, y′(0) = 1/2
4. y′′ − y = −20δ(t − 3); y(0) = 1, y′(0) = 0
5. y′′ + 2y′ + 3y = sin t + δ(t − 3π); y(0) = 0, y′(0) = 0
6. y′′ + 4y = δ(t − 4π); y(0) = 1/2, y′(0) = 0
7. y′′ + y = δ(t − 2π) cos t; y(0) = 0, y′(0) = 1
8. y′′ + 4y = 2δ(t − π/4); y(0) = 0, y′(0) = 0
9. y′′ + y = uπ/2(t) + 3δ(t − 3π/2) − u2π(t); y(0) = 0, y′(0) = 0
10. 2y′′ + y′ + 4y = δ(t − π/6) sin t; y(0) = 0, y′(0) = 0
11. y′′ + 2y′ + 2y = cos t + δ(t − π/2); y(0) = 0, y′(0) = 0
12. y(4) − y = δ(t − 1); y(0) = 0, y′(0) = 0, y′′(0) = 0, y′′′(0) = 0
13. Consider again the system in Example 1 of this section, in which an oscillation is excited

by a unit impulse at t = 5. Suppose that it is desired to bring the system to rest again after
exactly one cycle—that is, when the response first returns to equilibrium moving in the
positive direction.
(a) Determine the impulse kδ(t − t0) that should be applied to the system in order to
accomplish this objective. Note that k is the magnitude of the impulse and t0 is the time
of its application.
(b) Solve the resulting initial value problem, and plot its solution to confirm that it
behaves in the specified manner.

14. Consider the initial value problem

y′′ + γy′ + y = δ(t − 1), y(0) = 0, y′(0) = 0,
where γ is the damping coefficient (or resistance).
(a) Let γ = 1

2 . Find the solution of the initial value problem and plot its graph.

(b) Find the time t1 at which the solution attains its maximum value. Also find the
maximum value y1 of the solution.

(c) Let γ = 1
4 and repeat parts (a) and (b).

(d) Determine how t1 and y1 vary as γ decreases. What are the values of t1 and y1 when
γ = 0?

15. Consider the initial value problem

y′′ + γy′ + y = kδ(t − 1), y(0) = 0, y′(0) = 0,
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25. (a) By the method of variation of parameters, show that the solution of the initial value
problem

y′′ + 2y′ + 2y = f (t); y(0) = 0, y′(0) = 0
is

y =
∫ t

0
e−(t−τ)f (τ) sin(t − τ) dτ.

(b) Show that if f (t) = δ(t − π), then the solution of part (a) reduces to

y = uπ(t)e−(t−π) sin(t − π).

(c) Use a Laplace transform to solve the given initial value problem with
f (t) = δ(t − π), and confirm that the solution agrees with the result of part (b).

6.6 The Convolution Integral

Sometimes it is possible to identify a Laplace transform H(s) as the product of two
other transforms F(s) andG(s), the latter transforms corresponding to known func-
tions f and g, respectively. In this event, we might anticipate that H(s) would be
the transform of the product of f and g. However, this is not the case; in other
words, the Laplace transform cannot be commuted with ordinary multiplication.
On the other hand, if an appropriately defined “generalized product” is introduced,
then the situation changes, as stated in the following theorem.

Theorem 6.6.1 If F(s) = L{ f (t)} and G(s) = L{g(t)} both exist for s > a ≥ 0, then
H(s) = F(s)G(s) = L{h(t)}, s > a, (1)

where

h(t) =
∫ t

0
f (t − τ)g(τ) dτ =

∫ t

0
f (τ)g(t − τ) dτ. (2)

The function h is known as the convolution of f and g; the integrals in Eq. (2) are
called convolution integrals.

The equality of the two integrals in Eq. (2) follows by making the change of vari-
able t − τ = ξ in the first integral. Before giving the proof of this theorem, let us
make some observations about the convolution integral. According to this theorem,
the transform of the convolution of two functions, rather than the transform of their
ordinary product, is given by the product of the separate transforms. It is conven-
tional to emphasize that the convolution integral can be thought of as a “generalized
product” by writing

h(t) = (f ∗ g)(t). (3)
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2. Find an example different from the one in the text showing that (f ∗ 1)(t) need not be
equal to f (t).

3. Show, by means of the example f (t) = sin t, that f ∗ f is not necessarily nonnegative.

In each of Problems 4 through 7, find the Laplace transform of the given function.

4. f (t) =
∫ t

0
(t − τ)2 cos 2τ dτ 5. f (t) =

∫ t

0
e−(t−τ) sin τ dτ

6. f (t) =
∫ t

0
(t − τ)eτ dτ 7. f (t) =

∫ t

0
sin(t − τ) cos τ dτ

In each of Problems 8 through 11, find the inverse Laplace transform of the given function by
using the convolution theorem.

8. F(s) = 1
s4(s2 + 1) 9. F(s) = s

(s + 1)(s2 + 4)

10. F(s) = 1
(s + 1)2(s2 + 4) 11. F(s) = G(s)

s2 + 1
12. (a) If f (t) = tm and g(t) = tn, where m and n are positive integers, show that

f ∗ g = tm+n+1
∫ 1

0
um(1− u)n du.

(b) Use the convolution theorem to show that

∫ 1

0
um(1− u)n du = m! n!

(m + n + 1)! .

(c) Extend the result of part (b) to the case wherem and n are positive numbers but not
necessarily integers.

In each of Problems 13 through 20, express the solution of the given initial value problem in
terms of a convolution integral.

13. y′′ + ω2y = g(t); y(0) = 0, y′(0) = 1
14. y′′ + 2y′ + 2y = sinαt; y(0) = 0, y′(0) = 0
15. 4y′′ + 4y′ + 17y = g(t); y(0) = 0, y′(0) = 0
16. y′′ + y′ + 5

4y = 1− uπ(t); y(0) = 1, y′(0) = −1
17. y′′ + 4y′ + 4y = g(t); y(0) = 2, y′(0) = −3
18. y′′ + 3y′ + 2y = cosαt; y(0) = 1, y′(0) = 0
19. y(4) − y = g(t); y(0) = 0, y′(0) = 0, y′′(0) = 0, y′′′(0) = 0
20. y(4) + 5y′′ + 4y = g(t); y(0) = 1, y′(0) = 0, y′′(0) = 0, y′′′(0) = 0
21. Consider the equation

φ(t) +
∫ t

0
k(t − ξ)φ(ξ) dξ = f (t),

in which f and k are known functions, and φ is to be determined. Since the unknown
function φ appears under an integral sign, the given equation is called an integral equation;
inparticular,it belongs toa class of integral equationsknownasVolterra integral equations.
Take the Laplace transform of the given integral equation and obtain an expression for
L{φ(t)} in terms of the transforms L{ f (t)} and L{k(t)} of the given functions f and k. The
inverse transform of L{φ(t)} is the solution of the original integral equation.




