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then a particular solution of Eq. (16) is

Y(t) = −y1(t)
∫ t

t0

y2(s)g(s)
W(y1, y2)(s)

ds + y2(t)
∫ t

t0

y1(s)g(s)
W(y1, y2)(s)

ds, (28)

where t0 is any conveniently chosen point in I . The general solution is

y = c1y1(t) + c2y2(t) + Y(t), (29)

as prescribed by Theorem 3.5.2.

By examining the expression (28) and reviewing the process by which we derived
it,we can see that theremay be twomajor difficulties in using themethod of variation
of parameters. As we have mentioned earlier, one is the determination of y1(t) and
y2(t), a fundamental set of solutions of the homogeneous equation (18), when the
coefficients in that equation are not constants. The other possible difficulty lies in
the evaluation of the integrals appearing in Eq. (28). This depends entirely on the
nature of the functions y1, y2, and g. In using Eq. (28), be sure that the differential
equation is exactly in the form (16); otherwise, the nonhomogeneous term g(t) will
not be correctly identified.
A major advantage of the method of variation of parameters is that Eq. (28) pro-

vides an expression for the particular solution Y(t) in terms of an arbitrary forcing
function g(t). This expression is a good starting point if you wish to investigate the
effect of variations in the forcing function, or if you wish to analyze the response of
a system to a number of different forcing functions.

PROBLEMS In each of Problems 1 through 4, use the method of variation of parameters to find a particular
solution of the given differential equation. Then check your answer by using the method of
undetermined coefficients.
1. y′′ − 5y′ + 6y = 2et 2. y′′ − y′ − 2y = 2e−t

3. y′′ + 2y′ + y = 3e−t 4. 4y′′ − 4y′ + y = 16et/2

In each of Problems 5 through 12, find the general solution of the given differential equation.
In Problems 11 and 12, g is an arbitrary continuous function.
5. y′′ + y = tan t, 0 < t < π/2 6. y′′ + 9y = 9 sec2 3t, 0 < t < π/6
7. y′′ + 4y′ + 4y = t−2e−2t , t > 0 8. y′′ + 4y = 3 csc 2t, 0 < t < π/2
9. 4y′′ + y = 2 sec(t/2), −π < t < π 10. y′′ − 2y′ + y = et/(1+ t2)

11. y′′ − 5y′ + 6y = g(t) 12. y′′ + 4y = g(t)

In each of Problems 13 through 20, verify that the given functions y1 and y2 satisfy the corre-
sponding homogeneous equation; then find a particular solution of the given nonhomogeneous
equation. In Problems 19 and 20, g is an arbitrary continuous function.
13. t2y′′ − 2y = 3t2 − 1, t > 0; y1(t) = t2, y2(t) = t−1

14. t2y′′ − t(t + 2)y′ + (t + 2)y = 2t3, t > 0; y1(t) = t, y2(t) = tet

15. ty′′ − (1+ t)y′ + y = t2e2t , t > 0; y1(t) = 1+ t, y2(t) = et

16. (1− t)y′′ + ty′ − y = 2(t − 1)2e−t , 0 < t < 1; y1(t) = et , y2(t) = t

17. x2y′′ − 3xy′ + 4y = x2 ln x, x > 0; y1(x) = x2, y2(x) = x2 ln x
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equation can be expressed as a linear combination of a fundamental set of solutions
y1, . . . , yn, it follows that any solution of Eq. (2) can be written as

y = c1y1(t) + c2y2(t) + · · · + cnyn(t) + Y(t), (16)

whereY is some particular solution of the nonhomogeneous equation (2).The linear
combination (16) is called the general solution of the nonhomogeneous equation (2).
Thus the primary problem is to determine a fundamental set of solutions y1, . . . , yn

of the homogeneous equation (4). If the coefficients are constants, this is a fairly
simple problem; it is discussed in the next section. If the coefficients are not constants,
it is usually necessary to use numerical methods such as those in Chapter 8 or series
methods similar to those in Chapter 5. These tend to become more cumbersome as
the order of the equation increases.
To find a particular solution Y(t) in Eq. (16), the methods of undetermined coef-

ficients and variation of parameters are again available. They are discussed and
illustrated in Sections 4.3 and 4.4, respectively.
The method of reduction of order (Section 3.4) also applies to nth order linear

equations. If y1 is one solution of Eq. (4), then the substitution y = v(t)y1(t) leads to
a linear differential equation of order n − 1 for v′ (see Problem 26 for the case when
n = 3). However, if n ≥ 3, the reduced equation is itself at least of second order, and
only rarely will it be significantly simpler than the original equation.Thus, in practice,
reduction of order is seldom useful for equations of higher than second order.

PROBLEMS In each of Problems 1 through 6, determine intervals in which solutions are sure to exist.
1. y(4) + 4y′′′ + 3y = t 2. ty′′′ + (sin t)y′′ + 3y = cos t

3. t(t − 1)y(4) + ety′′ + 4t2y = 0 4. y′′′ + ty′′ + t2y′ + t3y = ln t

5. (x − 1)y(4) + (x + 1)y′′ + (tan x)y = 0 6. (x2 − 4)y(6) + x2y′′′ + 9y = 0
In each of Problems 7 through 10, determine whether the given functions are linearly depen-
dent or linearly independent. If they are linearly dependent, find a linear relation among
them.
7. f1(t) = 2t − 3, f2(t) = t2 + 1, f3(t) = 2t2 − t

8. f1(t) = 2t − 3, f2(t) = 2t2 + 1, f3(t) = 3t2 + t

9. f1(t) = 2t − 3, f2(t) = t2 + 1, f3(t) = 2t2 − t, f4(t) = t2 + t + 1
10. f1(t) = 2t − 3, f2(t) = t3 + 1, f3(t) = 2t2 − t, f4(t) = t2 + t + 1
In each of Problems 11 through 16, verify that the given functions are solutions of the
differential equation, and determine theirWronskian.
11. y′′′ + y′ = 0; 1, cos t, sin t

12. y(4) + y′′ = 0; 1, t, cos t, sin t

13. y′′′ + 2y′′ − y′ − 2y = 0; et , e−t , e−2t

14. y(4) + 2y′′′ + y′′ = 0; 1, t, e−t , te−t

15. xy′′′ − y′′ = 0; 1, x, x3

16. x3y′′′ + x2y′′ − 2xy′ + 2y = 0; x, x2, 1/x

17. Show that W(5, sin2 t, cos 2t) = 0 for all t. Can you establish this result without direct
evaluation of theWronskian?

18. Verify that the differential operator defined by

L[y] = y(n) + p1(t)y(n−1) + · · · + pn(t)y
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25. (a) Show that the functions f (t) = t2|t| and g(t) = t3 are linearly dependent on
0 < t < 1 and on −1 < t < 0.
(b) Show that f (t) and g(t) are linearly independent on −1 < t < 1.
(c) Show thatW(f , g)(t) is zero for all t in −1 < t < 1.

26. Show that if y1 is a solution of

y′′′ + p1(t)y′′ + p2(t)y′ + p3(t)y = 0,
then the substitution y = y1(t)v(t) leads to the following second order equation for v′:

y1v′′′ + (3y′
1 + p1y1)v′′ + (3y′′

1 + 2p1y′
1 + p2y1)v′ = 0.

In each of Problems 27 and 28, use the method of reduction of order (Problem 26) to solve
the given differential equation.
27. (2− t)y′′′ + (2t − 3)y′′ − ty′ + y = 0, t < 2; y1(t) = et

28. t2(t + 3)y′′′ − 3t(t + 2)y′′ + 6(1+ t)y′ − 6y = 0, t > 0; y1(t) = t2, y2(t) = t3

4.2 Homogeneous Equations with Constant Coefficients

Consider the nth order linear homogeneous differential equation

L[y] = a0y(n) + a1y(n−1) + · · · + an−1y′ + any = 0, (1)

where a0, a1, . . . , an are real constants and a0 �= 0. From our knowledge of second
order linear equations with constant coefficients, it is natural to anticipate that y = ert

is a solution of Eq. (1) for suitable values of r. Indeed,

L[ert] = ert(a0rn + a1rn−1 + · · · + an−1r + an) = ertZ(r) (2)

for all r, where
Z(r) = a0rn + a1rn−1 + · · · + an−1r + an. (3)

For those values of r for which Z(r) = 0, it follows that L[ert] = 0 and y = ert is a
solution of Eq. (1). The polynomial Z(r) is called the characteristic polynomial, and
the equation Z(r) = 0 is the characteristic equation of the differential equation (1).
Since a0 �= 0,weknow thatZ(r) is a polynomial of degreen and therefore hasn zeros,1

say, r1, r2, . . . , rn, some of which may be equal. Hence we can write the characteristic
polynomial in the form

Z(r) = a0(r − r1)(r − r2) · · · (r − rn). (4)

1An important question in mathematics for more than 200 years was whether every polynomial equation
has at least one root. The affirmative answer to this question, the fundamental theorem of algebra, was
given by Carl Friedrich Gauss (1777–1855) in his doctoral dissertation in 1799, although his proof does
not meet modern standards of rigor. Several other proofs have been discovered since, including three by
Gauss himself.Today, students oftenmeet the fundamental theoremof algebra in a first course on complex
variables,where it can be established as a consequence of some of the basic properties of complex analytic
functions.
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In each of Problems 7 through 10, follow the procedure illustrated in Example 4 to determine
the indicated roots of the given complex number.

7. 11/3 8. (1− i)1/2

9. 11/4 10. [2(cosπ/3+ i sinπ/3)]1/2

In each of Problems 11 through 28, find the general solution of the given differential equation.

11. y′′′ − y′′ − y′ + y = 0 12. y′′′ − 3y′′ + 3y′ − y = 0
13. 2y′′′ − 4y′′ − 2y′ + 4y = 0 14. y(4) − 4y′′′ + 4y′′ = 0
15. y(6) + y = 0 16. y(4) − 5y′′ + 4y = 0
17. y(6) − 3y(4) + 3y′′ − y = 0 18. y(6) − y′′ = 0
19. y(5) − 3y(4) + 3y′′′ − 3y′′ + 2y′ = 0 20. y(4) − 8y′ = 0
21. y(8) + 8y(4) + 16y = 0 22. y(4) + 2y′′ + y = 0
23. y′′′ − 5y′′ + 3y′ + y = 0 24. y′′′ + 5y′′ + 6y′ + 2y = 0
25. 18y′′′ + 21y′′ + 14y′ + 4y = 0 26. y(4) − 7y′′′ + 6y′′ + 30y′ − 36y = 0
27. 12y(4)+ 31y′′′+ 75y′′+ 37y′+ 5y = 0 28. y(4) + 6y′′′ + 17y′′ + 22y′ + 14y = 0
In each of Problems 29 through 36, find the solution of the given initial value problem, and
plot its graph. How does the solution behave as t → ∞?
29. y′′′ + y′ = 0; y(0) = 0, y′(0) = 1, y′′(0) = 2
30. y(4) + y = 0; y(0) = 0, y′(0) = 0, y′′(0) = −1, y′′′(0) = 0
31. y(4) − 4y′′′ + 4y′′ = 0; y(1) = −1, y′(1) = 2, y′′(1) = 0, y′′′(1) = 0
32. y′′′ − y′′ + y′ − y = 0; y(0) = 2, y′(0) = −1, y′′(0) = −2
33. 2y(4) − y′′′ − 9y′′ + 4y′ + 4y = 0; y(0) = −2, y′(0) = 0, y′′(0) = −2, y′′′(0) = 0
34. 4y′′′ + y′ + 5y = 0; y(0) = 2, y′(0) = 1, y′′(0) = −1
35. 6y′′′ + 5y′′ + y′ = 0; y(0) = −2, y′(0) = 2, y′′(0) = 0
36. y(4) + 6y′′′ + 17y′′ + 22y′ + 14y = 0; y(0) = 1, y′(0) = −2, y′′(0) = 0,

y′′′(0) = 3
37. Show that the general solution of y(4) − y = 0 can be written as

y = c1 cos t + c2 sin t + c3 cosh t + c4 sinh t.

Determine the solution satisfying the initial conditions y(0) = 0, y′(0) = 0, y′′(0) = 1,
y′′′(0) = 1. Why is it convenient to use the solutions cosh t and sinh t rather than et and
e−t?

38. Consider the equation y(4) − y = 0.
(a) Use Abel’s formula [Problem 20(d) of Section 4.1] to find the Wronskian of a
fundamental set of solutions of the given equation.
(b) Determine theWronskian of the solutions et , e−t , cos t, and sin t.
(c) Determine theWronskian of the solutions cosh t, sinh t, cos t, and sin t.

39. Consider the spring–mass system, shown in Figure 4.2.4, consisting of two unit masses
suspended from springs with spring constants 3 and 2, respectively. Assume that there is
no damping in the system.
(a) Show that the displacements u1 and u2 of themasses from their respective equilibrium
positions satisfy the equations

u′′
1 + 5u1 = 2u2, u′′

2 + 2u2 = 2u1. (i)
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16. Find a formula involving integrals for a particular solution of the differential equation

y′′′ − 3y′′ + 3y′ − y = g(t).

If g(t) = t−2et , determine Y(t).
17. Find a formula involving integrals for a particular solution of the differential equation

x3y′′′ − 3x2y′′ + 6xy′ − 6y = g(x), x > 0.

Hint: Verify that x, x2, and x3 are solutions of the homogeneous equation.
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