
August 7, 2012 21:04 c07 Sheet number 37 Page number 395 cyan black

7.4 Basic Theory of Systems of First Order Linear Equations 395

(b) Using Eq. (3), show that

dW
dt

= (p11 + p22)W .

(c) FindW(t) by solving the differential equation obtained in part (b).Use this expression
to obtain the conclusion stated in Theorem 7.4.3.
(d) ProveTheorem 7.4.3 for an arbitrary value of n by generalizing the procedure of parts
(a), (b), and (c).

3. Show that theWronskians of two fundamental sets of solutions of the system (3) can differ
at most by a multiplicative constant.
Hint:Use Eq. (15).

4. If x1 = y and x2 = y′, then the second order equation

y′′ + p(t)y′ + q(t)y = 0 (i)

corresponds to the system

x′
1 = x2,

x′
2 = −q(t)x1 − p(t)x2. (ii)

Show that if x(1) and x(2) are a fundamental set of solutions of Eqs. (ii), and if y(1) and y(2)

are a fundamental set of solutions of Eq. (i), thenW[y(1), y(2)] = cW[x(1), x(2)], where c is a
nonzero constant.
Hint: y(1)(t) and y(2)(t) must be linear combinations of x11(t) and x12(t).

5. Show that the general solution of x′ = P(t)x + g(t) is the sumof any particular solution x(p)

of this equation and the general solution x(c) of the corresponding homogeneous equation.

6. Consider the vectors x(1)(t) =
(

t
1

)
and x(2)(t) =

(
t2

2t

)
.

(a) Compute theWronskian of x(1) and x(2).

(b) In what intervals are x(1) and x(2) linearly independent?

(c) What conclusion can be drawn about the coefficients in the system of homogeneous
differential equations satisfied by x(1) and x(2)?

(d) Find this system of equations and verify the conclusions of part (c).

7. Consider the vectors x(1)(t) =
(

t2

2t

)
and x(2)(t) =

(
et

et

)
, and answer the same questions as

in Problem 6.

The following two problems indicate an alternative derivation of Theorem 7.4.2.

8. Let x(1), . . . , x(m) be solutions of x′ = P(t)x on the interval α < t < β. Assume that P is
continuous, and let t0 be an arbitrary point in the given interval. Show that x(1), . . . , x(m)

are linearly dependent for α < t < β if (and only if) x(1)(t0), . . . , x(m)(t0) are linearly depen-
dent. In other words x(1), . . . , x(m) are linearly dependent on the interval (α,β) if they are
linearly dependent at any point in it.
Hint: There are constants c1, . . . , cm that satisfy c1x(1)(t0) + · · · + cmx(m)(t0) = 0. Let
z(t) = c1x(1)(t) + · · · + cmx(m)(t), and use the uniqueness theorem to show that z(t) = 0
for each t in α < t < β.

9. Let x(1), . . . , x(n) be linearly independent solutions of x′ = P(t)x, where P is continuous on
α < t < β.
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Referring to Problem 19, solve the given system of equations in each of Problems 20 through
23. Assume that t > 0.

20. tx′ =
(
2 −1
3 −2

)
x 21. tx′ =

(
5 −1
3 1

)
x

22. tx′ =
(
4 −3
8 −6

)
x 23. tx′ =

(
3 −2
2 −2

)
x

In each of Problems 24 through 27, the eigenvalues and eigenvectors of a matrixA are given.
Consider the corresponding system x′ = Ax.
(a) Sketch a phase portrait of the system.
(b) Sketch the trajectory passing through the initial point (2, 3).
(c) For the trajectory in part (b), sketch the graphs of x1 versus t and of x2 versus t on the
same set of axes.

24. r1 = −1, ξ(1) =
(

−1
2

)
; r2 = −2, ξ(2) =

(
1
2

)

25. r1 = 1, ξ(1) =
(

−1
2

)
; r2 = −2, ξ(2) =

(
1
2

)

26. r1 = −1, ξ(1) =
(

−1
2

)
; r2 = 2, ξ(2) =

(
1
2

)

27. r1 = 1, ξ(1) =
(
1
2

)
; r2 = 2, ξ(2) =

(
1

−2

)

28. Consider a 2 × 2 system x′ = Ax. If we assume that r1 �= r2, the general solution is
x = c1ξ (1)er1t + c2ξ (2)er2 t , provided that ξ (1) and ξ (2) are linearly independent. In this prob-
lemwe establish the linear independence of ξ (1) and ξ (2) by assuming that they are linearly
dependent and then showing that this leads to a contradiction.
(a) Note that ξ (1) satisfies the matrix equation (A − r1I)ξ (1) = 0; similarly, note that
(A − r2I)ξ (2) = 0.
(b) Show that (A − r2I)ξ (1) = (r1 − r2)ξ (1).

(c) Suppose that ξ (1) and ξ (2) are linearly dependent.Then c1ξ (1) + c2ξ (2) = 0 and at least
one of c1 and c2 (say c1) is not zero. Show that (A − r2I)(c1ξ (1) + c2ξ (2)) = 0, and also show
that (A − r2I)(c1ξ (1) + c2ξ (2)) = c1(r1 − r2)ξ (1). Hence c1 = 0, which is a contradiction.
Therefore, ξ (1) and ξ (2) are linearly independent.

(d) Modify the argument of part (c) if we assume that c2 �= 0.
(e) Carry out a similar argument for the case in which the order n is equal to 3; note that
the procedure can be extended to an arbitrary value of n.

29. Consider the equation
ay′′ + by′ + cy = 0, (i)

where a, b, and c are constants with a �= 0. In Chapter 3 it was shown that the general
solution depended on the roots of the characteristic equation

ar2 + br + c = 0. (ii)

(a) Transform Eq. (i) into a system of first order equations by letting x1 = y, x2 = y′. Find

the system of equations x′ = Ax satisfied by x =
(

x1
x2

)
.
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(b) Find the equation that determines the eigenvalues of the coefficient matrix A in
part (a). Note that this equation is just the characteristic equation (ii) of Eq. (i).

30. The two-tank system of Problem 22 in Section 7.1 leads to the initial value problem

x′ =
(− 1

10
3
40

1
10 − 1

5

)
x, x(0) =

(
−17
−21

)
,

where x1 and x2 are the deviations of the salt levels Q1 and Q2 from their respective
equilibria.
(a) Find the solution of the given initial value problem.

(b) Plot x1 versus t and x2 versus t on the same set of axes.

(c) Find the smallest time T such that |x1(t)| ≤ 0.5 and |x2(t)| ≤ 0.5 for all t ≥ T .

31. Consider the system

x′ =
(

−1 −1
−α −1

)
x.

(a) Solve the system for α = 0.5. What are the eigenvalues of the coefficient matrix?
Classify the equilibrium point at the origin as to type.

(b) Solve the system forα = 2.What are the eigenvalues of the coefficientmatrix?Classify
the equilibrium point at the origin as to type.

(c) In parts (a) and (b), solutions of the system exhibit two quite different types of behav-
ior. Find the eigenvalues of the coefficient matrix in terms of α, and determine the value
of α between 0.5 and 2 where the transition from one type of behavior to the other occurs.

Electric Circuits. Problems 32 and 33 are concerned with the electric circuit described by the
system of differential equations in Problem 21 of Section 7.1:

d
dt

(
I

V

)
=

⎛
⎜⎜⎝

−R1
L

− 1
L

1
C

− 1
CR2

⎞
⎟⎟⎠
(

I

V

)
. (i)

32. (a) Find the general solution of Eq. (i) if R1 = 1 �,R2 = 3
5 �,L = 2 H, and C = 2

3 F.

(b) Show that I(t) → 0 and V(t) → 0 as t → ∞, regardless of the initial values I(0) and
V(0).

33. Consider the preceding system of differential equations (i).

(a) Find a condition on R1, R2, C, and L that must be satisfied if the eigenvalues of the
coefficient matrix are to be real and different.

(b) If the condition found in part (a) is satisfied, show that both eigenvalues are negative.
Then show that I(t) → 0 and V(t) → 0 as t → ∞, regardless of the initial conditions.
(c) If the condition found in part (a) is not satisfied, then the eigenvalues are either
complex or repeated. Do you think that I(t) → 0 and V(t) → 0 as t → ∞ in these cases
as well?
Hint: In part (c), one approach is to change the system (i) into a single second order
equation.We also discuss complex and repeated eigenvalues in Sections 7.6 and 7.8.



August 7, 2012 21:04 c07 Sheet number 80 Page number 438 cyan black

438 Chapter 7. Systems of First Order Linear Equations

18. Consider the system

x′ = Ax =
⎛
⎜⎝
1 1 1
2 1 −1

−3 2 4

⎞
⎟⎠ x. (i)

(a) Show that r = 2 is an eigenvalue of algebraic multiplicity 3 of the coefficient matrix
A and that there is only one corresponding eigenvector, namely,

ξ(1) =
⎛
⎜⎝
0
1

−1

⎞
⎟⎠ .

(b) Using the information in part (a), write down one solution x(1)(t) of the system (i).
There is no other solution of the purely exponential form x = ξert .
(c) To find a second solution, assume that x = ξte2t + ηe2t . Show that ξ and η satisfy the
equations

(A − 2I)ξ = 0, (A − 2I)η = ξ.

Since ξ has already been found in part (a), solve the second equation for η. Neglect the
multiple of ξ(1) that appears in η, since it leads only to a multiple of the first solution x(1).
Then write down a second solution x(2)(t) of the system (i).
(d) To find a third solution, assume that x = ξ(t2/2)e2t + ηte2t + ζe2t . Show that ξ, η, and ζ

satisfy the equations

(A − 2I)ξ = 0, (A − 2I)η = ξ, (A − 2I)ζ = η.

The first two equations are the same as in part (c), so solve the third equation for ζ, again
neglecting the multiple of ξ(1) that appears. Then write down a third solution x(3)(t) of the
system (i).
(e) Write down a fundamental matrix �(t) for the system (i).
(f) Form a matrix T with the eigenvector ξ(1) in the first column and the generalized
eigenvectors η and ζ in the second and third columns. Then findT−1 and form the product
J = T−1AT. The matrix J is the Jordan form ofA.

19. Consider the system

x′ = Ax =
⎛
⎜⎝
5 −3 −2
8 −5 −4

−4 3 3

⎞
⎟⎠ x. (i)

(a) Show that r = 1 is a triple eigenvalue of the coefficient matrix A and that there are
only two linearly independent eigenvectors, which we may take as

ξ(1) =
⎛
⎜⎝
1
0
2

⎞
⎟⎠ , ξ(2) =

⎛
⎜⎝
0
2

−3

⎞
⎟⎠ . (ii)

Write down two linearly independent solutions x(1)(t) and x(2)(t) of Eq. (i).
(b) To find a third solution, assume that x = ξtet + ηet ; then show that ξ and ηmust satisfy

(A − I)ξ = 0, (iii)

(A − I)η = ξ. (iv)




