
MATH 2060B - HW 2 - Solutions1

1 (P.179 Q5). Let a > b > 0 and let n ∈ N satisfy n ≥ 2. Show that a1/n − b1/n < (a− b)1/n.
Hint: Consider the function f(x) := x1/n − (x − 1)1/n. Show that f is decreasing for x ≥ 1 and
evaluate f at 1 and a/b

Solution.
Let f : [1,∞)→ R be defined by f(x) = x1/n − (x− 1)1/n. We proceed to show that f ′(x) < 0 for
all x ∈ (1,∞). By differentiation formula for power functions, linearity of differentiation and the
chain rule, we can compute that

f ′(x) =
1

n
x(1−n)/n − 1

n
(x− 1)(1−n)/n =

1

n
(x(1−n)/n − (x− 1)(1−n)/n)

for all x ∈ (1,∞). Since n ≥ 2, 1−n
n < 0. For all x ∈ (1,∞), with the fact that x > x − 1 ≥ 0,

we have x(1−n)/n < (x − 1)(1−n)/n (since the exponent 1−n
n is a rational number, the inequality

can be proved readily from the algebraic and order axioms for real numbers). Hence, f ′(x) =
1
n (x(1−n)/n − (x− 1)(1−n)/n) < 0 for all x ∈ (1,∞).
Now there are two ways to arrive at the next check point: f(a/b) < f(1)

Method 1: Using the Mean Value Theorem (MVT) directly. Since a > b, we have a/b > 1.
Note that f is continuous on [0, a/b] and differentiable on (0, a/b). Hence by MVT, there exists
ξ ∈ (0, a/b) such that f(a/b) − f(1) = f ′(ξ)(a/b − 1). From what have been proven, we have
f(a/b)− f(1) < 0 as f ′(ξ) < 0.

Method 2: Interpreting the monotonicity of f from its derivatives We first need to establish
the following fact.

Proposition 0.1. Let I be an open interval and f : I → R be a function differentiable on I. Suppose
f ′(x) ≤ 0 (resp. f ′(x) < 0) for all x ∈ I. Then f is decreasing (resp. strictly decreasing) on I.

Proof. Please refer to Theorem 6.2.7 of the textbook and the discussion afterwards or just try to
prove yourself. The result in fact follows almost readily from the Mean Value Theorem.

As a result f is strictly decreasing on (1,∞). Next, we would like to pass to strict monotoncity to
include the endpoint 1 to show that f(x) < f(1) for all x ∈ (1,∞). Fix x ∈ (1,∞). Choose a decreas-
ing sequence (xn) in (1, x) such that xn → 1. Then we have f(x) < f(xn) for all n ∈ N by the strict
decrease of f . Since f is continuous on [1,∞), we have f(1) = limn f(xn) and so (f(xn)) is a bounded
sequence (why?). Since f is strictly decreasing and (xn) is decreasing, (f(xn)) is an increasing se-
quence. By the Bounded Monotone Convergence Theorem, we have f(1) = limn f(xn) = supn f(xn).
We then have f(x) < f(xN ) ≤ f(1) upon choosing some xN ∈ {xn}. As a result f(a/b) < f(1) as
a/b > 1.

Finally, the result follows by noting that

f(
a

b
) < f(1)⇐⇒ a1/n − b1/n < (a− b)1/n

Comment.

1. The strictly in strictly decreasing is crucial. By now, you should learn that the difference
between strict inequalities (<) and inequalities (≤) can be huge. For example, the converse
of Proposition 0.1 in Method 2 is true for the non-strict case but in general not true for the
strict case.

2. Also in Method 2, an argument passing to the case of endpoints is crucial. Even though there
may be only a few points, it can induce large problems. For example, the Interior Extremum
Theorem does not apply to endpoints.

3. We give an alternative solution to the problem without using the hint on next page.

1Please feel free to email your TA at kllam@math.cuhk.edu.hk for any questions concerning homework.
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Alternative Solution to Question 1. Since a > b > 0, we have 0 < (a− b)1/n < b1/n + (a− b)1/n
and 0 < b1/n < b1/n + (a− b)1/n. Hence, we have

0 <
(a− b)1/n

b1/n + (a− b)1/n
< 1 0 <

b1/n

b1/n + (a− b)1/n
< 1

Since n ≥ 2, for all x ∈ (0, 1), we have 0 < xn < x (why?). Hence by taking nth power, we have

0 <
a− b

(b1/n + (a− b)1/n)n
<

(a− b)1/n

b1/n + (a− b)1/n
(1)

0 <
b

(b1/n + (a− b)1/n)n
<

b1/n

b1/n + (a− b)1/n
(2)

By summing up the inequalities, we have

a− b
(b1/n + (a− b)1/n)n

+
b

(b1/n + (a− b)1/n)n
<

(a− b)1/n

b1/n + (a− b)1/n
+

b1/n

b1/n + (a− b)1/n

⇐⇒ a

(b1/n + (a− b)1/n)n
< 1

⇐⇒ a1/n − b1/n < (a− b)1/n

Remark. The inequality in question is in fact equivalent to proving that for all n ≥ 2, n ∈ N, x, y > 0,
we have

x+ y < (x1/n + y1/n)n

In fact, the inequality remains true as long as n > 1 even if n ∈ R. In addition, the quantity of the
right-hand side is called the 1/n norm of the point (x, y) ∈ R2, denoted by ‖(x, y)‖1/n.

In general, we have ‖(x, y)‖p := (|x|p + |y|p)1/p for all (x, y) ∈ R2. as long as p > 0, which is called
the p-norm of (x, y). In fact for all (x, y) ∈ R and p > q > 0, we always have

‖(x, y)‖p := (|x|p + |y|p)1/p ≤ ‖(x, y)‖q := (|x|q + |y|q)1/q

The inequality in question concerns the case where p = 1 and q = 1/n where n ∈ N. (Note that the
last inequality is not strict as we include all (x, y) ∈ R2)
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2 (P.179 Q14). Let I be an interval and let f : I → R be differentiable on I.
Suppose f ′ is never 0 on I. Show that either f ′(x) > 0 for all x ∈ I or f ′(x) < 0 for all x ∈ I.

Solution. Suppose not. There exists x, y such that f ′(x) < 0, f ′(y) > 0. We can proceed in two way.

Method 1: Using Compactness. Suppose x < y. Since f is differentiable on I, f is con-
tinuous on I. Hence, f is continuous on [x, y], which is closed and bounded, and so a compact set.
By Extreme Value Theorem, f attains minimum at x∗ ∈ [x, y]. We proceed to show that x∗ in fact
lies in (x, y) and hence in the interior of I.

Suppose it were true that x∗ = x. Since f ′(x) := limh→0
f(x+h)−f(x)

h < 0, there exists r > 0 such

that f(t)−f(x)
t−x < 0 for all t ∈ I ∩ (x − r, x + r)\{x}. In particular when x < t and |x− t| < r,

we have f(t) < f(x), that is f is locally strict decreasing at x. As x∗ = x, the minimality of x∗
is contradicted. Similarly, f is locally strictly increasing at y so it is impossible that x∗ = y. To
conclude , we must have x∗ ∈ (x, y) , so it lies in an open interval on which f is differentiable. By
Proposition 1.10 (the Interior Extremum Theorem), an interior local extreme point has vanishing
derivative, so f ′(x∗) = 0, which is a contradiction to the assumption.
The case for x > y could be done similarly by considering a local maximum. The result follows.

Method 2: Using Connectedness. Without loss of generality, suppose x < y.
Case 1: suppose f(x) = f(y). Note that f is continuous on [x, y] and is differentiable on (x, y) by
assumption. Hence by Rolle’s Theorem. There exists ξ ∈ (x, y) such that f(ξ) = 0. Contradiction
arises.
Case 2: suppose f(x) < f(y). Since f ′(x) := limh→0

f(x+h)−f(x)
h > 0, there exists r > 0 such that

f(t)−f(x)
t−x < 0 for all t ∈ I ∩ (x − r, x + r)\{x}. In particular, there exists z ∈ (x, y) such that

f(z) < f(x). Therefore f(z) < f(x) < f(y). Hence, by the Intermediate Value Theorem, as f is
continuous on [z, y], there exists ξ ∈ (z, y) such that f(ξ) = f(x). Contradiction arises by using the
Rolle’s Theorem to ξ, x.
Case 3: suppose f(y) < f(x). Consider the f ′(y) > 0 instead of f ′(x) < 0 as in Case 2.
Therefore, in any case, contradiction arises and the result follows.

Comment.

1. Using Darboux’s Theorem (Theorem 6.2.12 in the textbook) is not accepted. This is because
basically, the statement here is the Darboux’s Theorem with some special points (with k = 0).
It is just pointless to use this Theorem in this question (I believe you knew that when you
were doing this question). You should be able to develop a sense on when to prove Theorems
in details or you risk having mark deduction in assessments (or in the other extreme, having
not enough time because too much is written). A rule of thumb is to stick to the Lecture and
Tutorial Notes.

2. In method 1, to use the Interior Extremum Theorem, one must check the the global extremum
induced by the Extremem Value Theorem does not attain at the boundaries. To do so, one
should use the locally strict monotonicity at the points instead of simplying stating that the
derivatives there are nonzero. This is basically how the Darboux’s Theorem is proved in the
textbook.

3. In method 2, use the Intermediate Value Theorem on f , NOT the derivative f ′. In general,
derivatives may not be continuous in the case of real numbers.

4. In line with the Lecture notes, we shall only consider the case where I is an open interval.
Otherwise, one may find it confusing if the x, y in the above proof are endpoints in which case
their derivatives have not been defined. Nonetheless, the solution above still follows if we are
using differentiability at boundaries as defined in Definition 6.1.1 in the textbook (using the
same difference quotient but with 1-sided limit).
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3 (P.196 Q4). Let x > 0. Show that

1 +
1

2
x− 1

8
x2 ≤

√
1 + x ≤ 1 +

1

2
x

Solution. Let f : [−1,∞) be defined by f(t) =
√

1 + t. Now fix x > 0. Note that f is smooth
(infinitely differentiable) on (−1,∞) (which is clear from the chain rule and the differentiability of
power functions) and 0, x ∈ (−1,∞). In particular, f, f ′ are continuous on [0, x] and f ′′ exists on
(0, x). By Taylor’s Theorem on f , there exists ξ ∈ (0, x) such that

f(x)− f(0) = f ′(0)(x− 0) +
1

2!
f ′′(ξ)(x− 0)2

In the above, f ′′(ξ) = −1
4 (1 + ξ)−3/2. Hence, we have −14 < f ′′(ξ) < 0. This is because ξ > 0 and so

we have 0 < (1 + ξ)−3/2 < 1. The required inequality follows by noting that

1 +
1

2
x− 1

8
x2 =f(0) + f ′(0)x+

1

2!
· −1

4
x2

≤f(0) + f ′(0)x+
1

2!
f ′′(ξ)x2 = f(x) =

√
1 + x

≤f(0) + f ′(0)x+
1

2!
· 0x2

=1 +
1

2
x

Comment. You should compare the assumption of the Taylor’s Theorem to that of the Mean Value
Theorem and observe the similarity.
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