
MATH 2050A - HW 6 - Solutions
(Commonly missed steps are in purple)

We would be using the following results.

Lemma 0.1 (Sequential Criteria: x → ∞). (Can be used without proofs.) Let A be an unbounded
set. Let f : A→ R be a function. Let L ∈ R. Then limx→∞ f(x) = L if and only if for all sequences
(xn) in A with limxn =∞, we have lim f(xn) = L

Proof. (⇒). Let (xn) be a sequence in A such that xn → ∞. Let ε > 0. By the assumption, there
exists M > 0 such that for all x ∈ A and x ≥ M , we have |f(x)− L| < ε. Furthermore, by the
convergence of (xn), there exists N ∈ N such that for all n ≥ N , we have xn ≥ M . Hence, when
n ≥ N , xn ≥M and xn ∈ A. Therefore, |f(xn)− L| < ε.
(⇐). Suppose not. Then there exists ε > 0 such that for all M ∈ R, there exists x ≥ M and
x ∈ A with |f(x)− L| ≥ ε. Therefore, we can choose a sequence (xn) in A such that xn ≥ n, but
|f(xn)− L| ≥ ε for all n ∈ N.
We proceed to show that (xn) converges to ∞. Let M > 0. By Archimedean Property, there exists
N ∈ N with N ≥ M . Hence if n ≥ N , xn ≥ n ≥ M . It follows by definition that limxn = ∞.
Therefore lim f(xn) = L by assumption. By order limit property and the fact that limit can
commute with absolute values (which is easy to prove), if follows that 0 = |L− L| ≥ ε, which is a
contradiction.

Lemma 0.2. (Can be used without proofs.) Let (xn) be a sequence in R. Suppose limxn = ∞.
Then (xn) is nonzero eventually . Furthermore, we have lim(x−1n ) = 0.

Proof. The proof is left as an exercise.
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Solutions

1 (P.123 Q9). Let a ∈ R.Let f : (a,∞)→ R be a function such that L := limx→∞ xf(x) ∈ R. Show
that limx→∞ f(x) = 0

Solution. By Lemma 0.1, it suffices to show that limn f(xn) = 0 for all sequence in (a,∞) such that
xn → ∞. Let (xn) be a sequence in (a,∞) such that xn → ∞. By Lemma 0.1 again, we have
limn xnf(xn) = L.
Note that by Lemma 0.2, (xn) is eventually nonzero and limn(xn)−1 = 0. Therefore we have
f(xn) = xnf(xn)x−1n for sufficiently large n (where xn are nonzero). Hence by the product limit
property, we have lim f(xn) = limxnf(xn) limx−1n = L · 0 = 0.

2 (P.123 Q13). Let a ∈ R. Let f, g be defined on (a,∞). Suppose limx→∞ f = L and limx→∞ g =∞
where L ∈ R. Show that limx→∞ f ◦ g = L.

Solution. Let ε > 0. By the convergence of f , there exists a < M1 ∈ R such that |f(x)− L| < ε for
all x ≥M1 . By the convergence of g, there exists a < M2 ∈ R such that g(x) ≥M1 for all x ≥M2.
Now suppose x ≥ M2 and x ∈ (a,∞). We have x ≥ M2. Hence g(x) ≥ M1, which implies
|f ◦ g(x)− L| < ε. The result follows from the definition of limits.

3 (P.129 Q4a). Let x ∈ R. Define bxc to be the greatest integer n ∈ Z such that n ≤ x, for example,
bπc = 3, b−πc = −4. We call x 7→ bxc the floor function, which is defined on R.

i Determine the points of continuity of f(x) = bxc. (Do not forget to prove your assertion).

ii Optional (+1 Bonus): Show that the floor function is well-defined.

Solution.

i We claim that f is continuous precisely at R\Z. Since every point in R is a limit point in R, we
proceed to consider functional limits.
First, f is not continuous on Z. Let n ∈ Z. Let ε > 0. Take δ := 1/2. Then for all 0 < n− x <
δ = 1/2, we have n− 1 ≤ x < n. Hence, |f(x)− (n− 1)| = |bxc − (n− 1)| = 0 < ε.
Meanwhile, for all 0 < x − n < δ = 1/2, we have n ≤ x < n + 1. Similarly, |f(x)− n| = 0 < ε.
Hence, we have limx→n− f(x) = n − 1 but limx→n+ f(x) = n. Since the left and right limit
do not coincide, by the Characterization of limits using left, right limits, limx→n f(x) does not
exists. As every point x ∈ R is a limit point of R, we conclude that f is not continuous at n for
all n ∈ Z.
Next we show that f is continuous at x ∈ R\Z. Let r ∈ R\Z. Then brc < r < brc + 1. Let
ε > 0. Take δ := min{r − brc, brc + 1 − r}. Then for all x ∈ R with |x− r| < δ, we have
brc < x < brc + 1. Hence bxc = brc. Therefore |f(x)− f(r)| = |bxc − brc| = 0 < ε. The result
follows by definition of continuity.

ii The solution is on the next page.

4 (P.129 Q10). Show that the absolute value function f(x) = |x| is continuous everywhere on R.

Solution. Fix x ∈ R. Let ε > 0. Take δ := ε. Let y ∈ R. Suppose |x− y| < δ. By the triangle
inequality, we have

|f(x)− f(y)| = ||x| − |y|| ≤ |x− y| < δ = ε

Hence by definition, f is continuous for all x ∈ R, that is, continuous everywhere on R.
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3 (ii).Optional(+1 Bonus): Show that the floor function is well-defined.

Solution. To show the floor function is well-defined, we need to show that the floor function is really
a function, that is, first there exists a greatest integer n ∈ Z with n ≤ x. Second, such greatest
integer is unique. The latter is clear as the maximum of any subset of real numbers is unique. It
remains to verify the former.

Method 1: Using the Well-ordered Property.
The well-orderness of natural numbers says that any non-empty subset of natural numbers has a
minimum. Note that this is taken as an axiom of natural numbers in the textbook.
By a translation, it can be easily generalized to integer setting, which says that any non-empty
subset of integers that is bounded below by integers has a minimum.
This could be further generalized to the setting of real numbers, which says that any non-empty
subset of integers that is bounded below by real numbers has a minimum by using the Archimedean
Property. Finally, by multiplying with a negative number, we have that any non-empty subset of
integers that is bounded above by real numbers has a maximum. (Please fill in the gaps, if any, in
the above discussion yourself.)
Now we let x ∈ R and Ax := {n ∈ Z : n ≤ x}. Then by the Archimedean Property , there exists
N ∈ N such that −x ≤ N , which imples −N ≤ x. Since −N ∈ Z, we can conclude that Ax is a
non-empty subset of integers. Following the above discussion, we can conclude that A has a (unique)
maximum. This shows that for any real number x there exists a greatest integer less than or equal
to x. Thus, the floor function is well-defined.

Method 2: Using the fact that there is no integer between 0 and 1, that is, 0 ≤ n ≤ 1
implies n = 0 or n = 1 if n ∈ Z.
Let x ∈ R and Ax := {n ∈ Z : n ≤ x}. By the Archimedean Property as in Method 1, Ax is
non-empty and is bounded above by x. Hence by the Axiom of Completeness, supAx ∈ R. By
definition, there exists n ∈ Ax such that sup(Ax) − 1 < n. Then sup(Ax) < n + 1 which implies
that n + 1 /∈ Ax but n ∈ Ax. Hence, by definition of Ax, n + 1 > x ≥ n. We now claim that
sup(Ax) = n. Suppose m ∈ Ax then m ≤ x. Suppose m > n. This would imply m ≥ n + 1.
Otherwise, we have 0 < m − n < 1. As integer is closed under addition, m − n is an integer, but
there is no integer between 0 and 1. Hence we must have m ≥ n + 1. But then x ≥ m ≥ n + 1,
which contradicts the construction of n. Hence m ≤ n. Therefore sup(Ax) ≤ n. As n ∈ Ax, we have
n = sup(Ax) = max(Ax) ∈ Ax. To conclude, n is the greatest integer such that n ≤ x.
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Appendix

In fact, we do not have to consider the well-orderness of N an axiom for natural numbers. With
Z being the smallest subring of R and N being the subset of Z greater than 0, the well-orderness
property of N could be deduced from definition. The following is the related discussion.

We call a subset Z ⊂ R a subring if 0, 1 ∈ Z and Z is closed under addition, subtraction
and multiplication (not necessarily division), for example, the set of integers Z, the set of rational
numbers Q, the set of dyadic fractions { a

2b
| a ∈ Z, b ∈ N}, or in general p-adic fractions (try to guess

their definitions) are all subrings of real numbers. One can check that there is a smallest subring
of real numbers R (and in fact any arbitrary ring) in the sense that every subring of real numbers
will contain that smallest subring by set inclusion. In fact we can define integers to be the smallest
subring of R. The following is a characterization of well-orderness of subrings of R as inspired from
the above proofs.

Proposition 1.1. Let Z ⊂ R be a subring. Then the following are equivalent:

1. Every non-empty bounded below subset of Z has a minimum.

2. If x ∈ Z and 0 ≤ x ≤ 1, then x = 0 or x = 1.

Proof. (⇒.) Suppose there exists x ∈ Z and 0 < x < 1. Then by product compatibility of order and
Z being closed in multiplication, we have xn ∈ Z and 0 < xn < 1 for all n ∈ Z+. But we know that
limxn = 0 = inf xn, whose proof could be relying only on the bounded monotone theorem (hence the
axiom of completeness) of R without assuming N has any of the two properties in question, but that
1, 2, . . . ∈ N and 1 < 2 < . . . < n < . . . which follows only from order compatibility with addition
and multiplication. This implies the bounded below set {xn} ⊂ Z has no minimum, contradicting
the assumption on Z.
(⇐.) By definition, Z is the smallest subring of R. Hence for all x ∈ Z, x ∈ Z. This implies that
Z has the property in assumption (since Z has). By the above proof in Method 2, we could define
the floor function b·c with respect to Z. (Note that to prove the Archimedean Property of Z+, we
only need the additive structure of Z together with the Axiom of Completeness without using the
2 properties in question.) Let A ⊂ Z be bounded below. Let α := inf(A) ∈ R. Using the floor
function, we can define bαc ∈ Z ⊂ Z such that bαc ≤ α < bαc + 1. By definition of inf, there
exists a ∈ A ⊂ Z such that bαc ≤ α ≤ a < bαc+ 1. By order compatibility with addition, we have
0 ≤ a − bαc < 1. Since, a, bαc ∈ Z, we have a − bαc ∈ Z. By the assumption, a − bαc = 0 which
implies bαc ≤ α ≤ a = bαc. This follows that A 3 a = bαc = α = inf(A) = min(A) is the minimum
of A.

Corollary 1.2. There is a unique subring Z of R with the property that every non-empty bounded
below subset has a minimum.

Proof. (Uniqueness:) Let Z1, Z2 be subrings with the property. Then we claim Z1 = Z2. Being a
subset to such subrings, Z has the property in question and so the floor function could be defined.
Let x ∈ Z1. Suppose x /∈ Z2. Then by the assumption, bxc < x < bxc+ 1. However, as x ∈ Z1, we
also have x = bxc or x = bxc+ 1. This is a contradiction. Hence it must be that x ∈ Z2. Therefore,
Z1 ⊂ Z2. The other direction is similar. Hence, Z1 = Z2.
(Existence:) We claim Z is the unique subring having the desired property. Note that being the
smallest subring of R, Z = {0,±1,±2, . . .}. Hence there exists no x ∈ Z with 0 < x < 1 by
the symmetry of ≤ as a partial ordering. This is because we have the ordering below by order
compatibility with both addition and multiplication:

. . . < −n < . . . < −1 < 0 < 1 < . . . < n < . . .
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