
MATH 2050A - HW 2 - Solutions

We would be using the following Lemmas.

Lemma 0.1. Let (xn) be a sequence of real numbers. Suppose limxn exists, then limxn = limx2n =
limx2n−1.

Proof. Let L := limxn. Let ε > 0. Then there exists N ∈ N such that |xn − L| < ε for all n ≥ N .
Note that if n ≥ N , we have 2n, 2n− 1 ≥ n ≥ N . Hence, |x2n − L| < ε and |x2n−1 − L| < ε.
Therefore by the ε−N definition, we have limx2n = limx2n−1 = L = limxn.

Solutions

1 (P.61 Q5). Use the definition of the limit of a real sequence to establish the following limits.

lim

(
n

n2 + 1

)
= 0a) lim

(
2n

n+ 1

)
= 2b)

lim

(
3n+ 1

2n+ 5

)
=

3

2
c) lim

(
n2 − 1

2n2 + 3

)
=

1

2
d)

Solution.

(a). Let ε > 0. By the Archimedean Property, choose N ∈ N such that
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The result follows by the ε−N definition.

(b). Let ε > 0. By the Archimedean Property, choose N ∈ N such that
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Suppose n ≥ N , then we have∣∣∣∣ 2n
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The result follows by the ε−N definition.

(c). Let ε > 0. By the Archimedean Property, choose N ∈ N such that
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The result follows by the ε−N definition.

(d). Let ε > 0. By the Archimedean Property, choose N ∈ N such that
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Suppose n ≥ N , then we have∣∣∣∣ n2 − 1
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The result follows by the ε−N definition.
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2 (P.61 Q8). Let (xn) be a sequence of real numbers.

(i) Prove that lim(xn) = 0 if and only if lim(|xn|) = 0

(ii) Give an example to show that the convergence of (|xn|) need not imply the convergence of (xn)

Solution.

1. (⇒), suppose lim(xn) = 0. Let ε > 0. Then there exists N ∈ N such that |xn − 0| < ε for all
n ≥ N .
Hence, if n ≥ N , we have ||xn| − 0| = |xn − 0| < ε. The result follows by the ε−N definition.
(⇐), suppose lim(|xn|) = 0. Let ε > 0. Then there exists N ∈ N such that ||xn| − 0| < ε for
all n ≥ N
Hence, if n ≥ N , we have |xn − 0| = ||xn| − 0| < ε. The result follows by the ε−N definition.

2. Take xn := (−1)n for all n ∈ N. Since (|xn|) is a constant sequence, it converges. It remains to
show (xn) does not converge. (We would be giving a proof different from that in the Lecture.)
Observe that x2n = 1 and x2n−1 = −1 for all n ∈ N. Hence limx2n = 1 and limx2n−1 = −1.
So limx2n 6= limx2n−1. By the contrapositive of Lemma 0.1, (xn) diverges.
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