MATH 2050A - HW 2

Due Date: 29 Sep 2020, 23:59

(Please submit assignments to Blackboard and follow the instructions there.)

Problems: P.61 Q5, 8

(2 Questions in total)

Textbook: Bartle RG, Sherbert DR(2011). Introduction to Real Analysis, fourth edition, John Wiley Sons,Inc.

We type here all the required problems *for your convenience only*. The presentation of the problems here may be different from the original one but the respective solution should be unaffected.

1 (P.61 Q5). Use the definition of the limit of a real sequence to establish the following limits.

a)
$$\lim \left(\frac{n}{n^2+1}\right) = 0$$

b) $\lim \left(\frac{2n}{n+1}\right) = 2$
c) $\lim \left(\frac{3n+1}{2n+5}\right) = \frac{3}{2}$
d) $\lim \left(\frac{n^2-1}{2n^2+3}\right) = \frac{1}{2}$

2 (P.61 Q8). Let (x_n) be a sequence of real numbers.

- 1. Prove that $\lim(x_n) = 0$ if and only if $\lim(|x_n|) = 0$
- 2. Give an example to show that the convergence of $(|x_n|)$ need not imply the convergence of (x_n)