
Chapter 9: Determinant

9.1 Definition

Suppose A is an m× n matrix. Then the submatrix A(i|j) is the (m− 1)× (n− 1) matrix obtained

from A by removing row i and column j.

Example 9.1.1: Suppose

A =

1 2 3 4

5 6 7 8

9 10 11 12

 .

Then

A(2|3) =

[
1 2 4

9 10 12

]
, A(3|1) =

[
2 3 4

6 7 8

]
.

�

Example 9.1.2: Suppose

A =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 .

Then

A(3|2) =

a11 a13 a14

a21 a23 a24

a41 a42 a44

 , A(4|1) =

a12 a13 a14

a22 a23 a24

a32 a33 a34

 .

�

The determinant is a function that take a square matrix as an input and produces a scalar as an

output.

Definition 9.1.1: Suppose A is a square matrix. Then its determinant, det(A) (or denoted by |A|), is
an element of R defined recursively by:

1. If A is a 1× 1 matrix, then det(A) = [A]11.

2. If A is a matrix of order n with n ≥ 2, then

det(A) = [A]1,1 det(A (1|1))− [A]1,2 det(A (1|2)) + [A]1,3 det(A (1|3))+

+ · · ·+ (−1)n+1[A]1,n det(A (1|n))

=

n∑
i=1

(−1)i+1[A]1,i det(A (1|i)).

So to compute the determinant of a 5 × 5 matrix we must build 5 submatrices, each of size 4. To

compute the determinants of each the 4 × 4 matrices we need to create 4 submatrices each, these now

of size 3 and so on. To compute the determinant of a 10 × 10 matrix would require computing the

determinant of 10! = 10× 9× 8× 7× 6× 5× 4× 3× 2 = 3, 628, 800 1× 1 matrices. Fortunately there are

better ways.

Let us compute the determinant of a reasonably sized matrix by hand.
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Example 9.1.3: Suppose that we have the 3× 3 matrix

A =

 3 2 −1

4 1 6

−3 −1 2

 .

Then

det(A) = |A| =

∣∣∣∣∣∣∣
3 2 −1

4 1 6

−3 −1 2

∣∣∣∣∣∣∣
= 3

∣∣∣∣∣ 1 6

−1 2

∣∣∣∣∣− 2

∣∣∣∣∣ 4 6

−3 2

∣∣∣∣∣+ (−1)

∣∣∣∣∣ 4 1

−3 −1

∣∣∣∣∣
= 3 [1 det(2)− 6 det(−1)]− 2 [4 det(2)− 6 det(−3)]− [det(−1)− 1 det(−3)]

= 3 [1(2)− 6(−1)]− 2 [4(2)− 6(−3)]− [4(−1)− 1(−3)]

= 24− 52 + 1 = −27.

�

Proposition 9.1.2: Suppose

A =

[
a b

c d

]
.

Then

det(A) = ad− bc.

Proof: ∣∣∣∣∣a b

c d

∣∣∣∣∣ = a det(d)− bdet(c) = ad− bc.

�

Proposition 9.1.3: Suppose

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 .

Then

det(A) = a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31.

Proof:

det(A) = a11 det(A (1|1))− a12 det(A (1|2)) + a13 det(A (1|3))

= a11

∣∣∣∣∣a22 a23

a32 a33

∣∣∣∣∣− a12

∣∣∣∣∣a21 a23

a31 a33

∣∣∣∣∣+ a13

∣∣∣∣∣a21 a22

a31 a32

∣∣∣∣∣
= a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

= a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31.

�
The rule of Sarrus is useful for memorizing the determinant of order 3:
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a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32
+++−−−

Remark: The rule of Sarrus is valid ONLY for determinants of order 3.

9.2 Computing Determinants

Theorem 9.2.1: Suppose that A is a square matrix of size n. For 1 ≤ i ≤ n

det(A) =

n∑
j=1

(−1)i+j [A]i,j det(A(i|j)),

which is known as expansion about row i.

Skip the proof. If you are interested, see Beezer, p.266.

Theorem 9.2.2: Suppose that A is a square matrix. Then det(At) = det(A).

Skip the proof. If you are interested, see Beezer, p.267.

Theorem 9.2.3: Suppose that A is a square matrix of size n. Then for 1 ≤ j ≤ n

det(A) =
n∑

i=1

(−1)i+j [A]i,j det(A(i|j)),

which is known as expansion about column j.

Follows from Theorems 9.2.1 and 9.2.2.

Example 9.2.1: Let

A =


−2 3 0 1

9 −2 0 1

1 3 −2 −1

4 1 2 6

 .

Then expanding about the fourth row yields,

|A| = (−1)4+1(4)

∣∣∣∣∣∣∣
3 0 1

−2 0 1

3 −2 −1

∣∣∣∣∣∣∣+ (−1)4+2(1)

∣∣∣∣∣∣∣
−2 0 1

9 0 1

1 −2 −1

∣∣∣∣∣∣∣
+ (−1)4+3(2)

∣∣∣∣∣∣∣
−2 3 1

9 −2 1

1 3 −1

∣∣∣∣∣∣∣+ (−1)4+4(6)

∣∣∣∣∣∣∣
−2 3 0

9 −2 0

1 3 −2

∣∣∣∣∣∣∣
= (−4)(10) + (1)(−22) + (−2)(61) + 6(46) = 92
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Expanding about column 3 gives

|A| = (−1)1+3(0)

∣∣∣∣∣∣∣
9 −2 1

1 3 −1

4 1 6

∣∣∣∣∣∣∣+ (−1)2+3(0)

∣∣∣∣∣∣∣
−2 3 1

1 3 −1

4 1 6

∣∣∣∣∣∣∣+
(−1)3+3(−2)

∣∣∣∣∣∣∣
−2 3 1

9 −2 1

4 1 6

∣∣∣∣∣∣∣+ (−1)4+3(2)

∣∣∣∣∣∣∣
−2 3 1

9 −2 1

1 3 −1

∣∣∣∣∣∣∣
= 0 + 0 + (−2)(−107) + (−2)(61) = 92

Notice how much easier the second computation was. By choosing to expand
about the third column, we have two entries that are zero, so two 3×3 determinants
need not be computed at all! �

Example 9.2.2: Suppose that

U =


2 3 −1 3 3

0 −1 5 2 −1

0 0 3 9 2

0 0 0 −1 3

0 0 0 0 5

 .

We will compute the determinant of this 5× 5 matrix by consistently expanding about the first column

for each submatrix that arises and does not have a zero entry multiplying it.

det(U) =

∣∣∣∣∣∣∣∣∣∣∣

2 3 −1 3 3

0 −1 5 2 −1

0 0 3 9 2

0 0 0 −1 3

0 0 0 0 5

∣∣∣∣∣∣∣∣∣∣∣
= (−1)1+1(2)

∣∣∣∣∣∣∣∣∣
−1 5 2 −1

0 3 9 2

0 0 −1 3

0 0 0 5

∣∣∣∣∣∣∣∣∣
= (2)(−1)1+1(−1)

∣∣∣∣∣∣∣
3 9 2

0 −1 3

0 0 5

∣∣∣∣∣∣∣ = (2)(−1)(−1)1+1(3)

∣∣∣∣∣ −1 3

0 5

∣∣∣∣∣
= (2)(−1)(3)[(−1)(5)− (3)(0)] = (2)(−1)(3)(−1)(5) = 30.

�

Theorem 9.2.4: Suppose A is an upper triangular matrix, i.e.,

A =



a11 a12 a13 · · · a1n

0 a22 a23 · · · a2n

0 0 a33 · · · a3n
...

...
...

. . .
...

0 0 0 · · · ann


.

Then

det(A) = a11a22 · · · ann.
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Proof:

det(A) = a11 det


a22 a23 · · · a2n

0 a33 · · · a3n
...

...
. . .

...

0 0 · · · ann

 expand along the column 1

= a11a22 det


a33 · · · a3n
...

. . .
...

0 · · · ann

 expand along the column 1

· · ·

= a11a22 · · · ann.

�
Similarly

Theorem 9.2.5: Suppose A is a lower triangular matrix, i.e.,

A =



a11 0 0 · · · 0

a21 a22 0 · · · 0

a31 a32 a33 · · · 0
...

...
...

. . .
...

an1 an2 an3 · · · ann


.

Then

det(A) = a11a22 · · · ann.

When you consult other texts in your study of determinants, you may run into the terms minor and

cofactor, especially in a discussion centered on expansion about rows and columns. We have chosen

not to make these definitions formally since we have been able to get along without them. However,

informally, a minor is a determinant of a submatrix, specifically det(A(i|j)) and is usually referenced as

the minor of [A]ij . A cofactor is a signed minor, specifically the cofactor of [A]ij is (−1)i+j det(A(i|j)).

9.3 Properties of Determinants of Matrices

Theorem 9.3.1: Suppose that A is a square matrix with a row where every entry is zero, or a column

where every entry is zero. Then det(A) = 0.

Proof: Suppose that A is a square matrix of size n and row i has every entry equal to zero. We compute

det(A) via expansion about row i.

det(A) =
n∑

j=1

(−1)i+j [A]ij det(A(i|j)) =
n∑

j=1

(−1)i+j(0) det(A(i|j)) Row i is zeros

=
n∑

j=1

0 = 0.

The proof for the case of a zero column is entirely similar, or could be derived by the fact that

det(A) = det(At). �
By means of Theorem 9.2.2, the proofs of the following theorems are only focused on rows.
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Theorem 9.3.2: Suppose that A is a square matrix. Let B be the matrix obtained from A by inter-

changing the location of two rows, or interchanging the location of two columns, i.e., A
Ri↔Rj−−−−−→ B or

A
Ci↔Cj−−−−→ B for some i ̸= j. Then det(A) = −det(B).

Skip the proof. If you are interested, see Beezer p.273.

Theorem 9.3.3: Suppose that A is a square matrix with two equal rows, or two equal columns. Then

det(A) = 0.

Proof: Suppose the i row and the j row of A are the same. Let B be the matrix
obtained from A by swapping i row and the j row of A. Then B = A. Combining
with Theorem 9.3.2, we have det(A) = − det(B) = − det(A). So det(A) = 0. �

Theorem 9.3.4: Suppose that A is a square matrix. Let B be the square matrix obtained from A by

multiplying a single row (say, row i) by the scalar c, or by multiplying a single column by the scalar c,

i.e., A
cRi−−→ B or A

cCi−−→ B. Then det(B) = cdet(A), i.e., det(A) = c−1 det(B).

Proof: Expand along row i, we have

det(B) =
n∑

j=1

(−1)i+j[B]ij det(B(i|j))

=
n∑

j=1

(−1)i+jc[A]ij det(A(i|j))

= c
n∑

j=1

(−1)i+j[A]ij det(A(i|j)) = c det(A).

�

Theorem 9.3.5: Suppose that A ∈ Mn. Let B be the matrix obtained from A by multiplying the row i

by a scalar c and adding to row j (or by multiplying the column i by a scalar c and adding to the column

j), i ̸= j. Then det(B) = det(A).

Proof: Expand det(B) along row j. We have

det(B) =
n∑

k=1

(−1)j+k[B]jk det(B(j|k)) =
n∑

k=1

(−1)j+k[c[A]ik + [A]jk] det(A(j|k))

=
n∑

k=1

(−1)j+k[c[A]ik] det(A(j|k)) +
n∑

k=1

(−1)j+k[A]jk det(A(j|k))

= c
n∑

k=1

(−1)j+k[A]ik det(A(j|k)) + det(A)
Theorem 9.3.3
========= c× 0 + det(A) = det(A).

�
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Theorem 9.3.6:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n
...

... · · ·
...

ai−1,1 ai−1,2 · · · ai−1,n

b1 + c1 b2 + c2 · · · bn + cn

ai+1,1 ai+1,2 · · · ai+1,n

...
... · · ·

...

an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n
...

... · · ·
...

ai−1,1 ai−1,2 · · · ai−1,n

b1 b2 · · · bn

ai+1,1 ai+1,2 · · · ai+1,n

...
... · · ·

...

an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n
...

... · · ·
...

ai−1,1 ai−1,2 · · · ai−1,n

c1 c2 · · · cn

ai+1,1 ai+1,2 · · · ai+1,n

...
... · · ·

...

an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Similarly ∣∣∣∣∣∣∣∣∣∣
a11 · · · a1,j−1 b1 + c1 a1,j+1 · · · a1n

a21 · · · a2,j−1 b2 + c2 a2,j+1 · · · a2n
...

...
...

...
...

...
...

an1 · · · an,j−1 bn + cn an,j+1 · · · ann

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
a11 · · · a1,j−1 b1 a1,j+1 · · · a1n

a21 · · · a2,j−1 b2 a2,j+1 · · · a2n
...

...
...

...
...

...
...

an1 · · · an,j−1 bn an,j+1 · · · ann

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣
a11 · · · a1,j−1 c1 a1,j+1 · · · a1n

a21 · · · a2,j−1 c2 a2,j+1 · · · a2n
...

...
...

...
...

...
...

an1 · · · an,j−1 cn an,j+1 · · · ann

∣∣∣∣∣∣∣∣∣∣
.

Proof: Expand along row i (or column j). �

We will perform a sequence of elementary row operations on a matrix, shooting for an upper triangular

matrix, whose determinant will be simply the product of its diagonal entries. For each row operation, we

will track the effect on the determinant via Theorems 9.3.4, 9.3.5 and 9.3.2.

Example 9.3.1: Compute ∣∣∣∣∣∣∣∣∣∣
2 0 2 3

1 3 −1 1

−1 1 −1 2

3 5 4 0

∣∣∣∣∣∣∣∣∣∣
.
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∣∣∣∣∣∣∣∣∣
2 0 2 3

1 3 −1 1

−1 1 −1 2

3 5 4 0

∣∣∣∣∣∣∣∣∣
R1↔R2====== −

∣∣∣∣∣∣∣∣∣
1 3 −1 1

2 0 2 3

−1 1 −1 2

3 5 4 0

∣∣∣∣∣∣∣∣∣
−2R1+R2======= −

∣∣∣∣∣∣∣∣∣
1 3 −1 1

0 −6 4 1

−1 1 −1 2

3 5 4 0

∣∣∣∣∣∣∣∣∣
1R1+R3====== −

∣∣∣∣∣∣∣∣∣
1 3 −1 1

0 −6 4 1

0 4 −2 3

3 5 4 0

∣∣∣∣∣∣∣∣∣
−3R1+R4======= −

∣∣∣∣∣∣∣∣∣
1 3 −1 1

0 −6 4 1

0 4 −2 3

0 −4 7 −3

∣∣∣∣∣∣∣∣∣
R3+R2====== −

∣∣∣∣∣∣∣∣∣
1 3 −1 1

0 −2 2 4

0 4 −2 3

0 −4 7 −3

∣∣∣∣∣∣∣∣∣
− 1

2R2
===== 2

∣∣∣∣∣∣∣∣∣
1 3 −1 1

0 1 −1 −2

0 4 −2 3

0 −4 7 −3

∣∣∣∣∣∣∣∣∣
−4R2+R3======= 2

∣∣∣∣∣∣∣∣∣
1 3 −1 1

0 1 −1 −2

0 0 2 11

0 −4 7 −3

∣∣∣∣∣∣∣∣∣
−4R2+R4======= 2

∣∣∣∣∣∣∣∣∣
1 3 −1 1

0 1 −1 −2

0 0 2 11

0 0 3 −11

∣∣∣∣∣∣∣∣∣
−R3+R4======= 2

∣∣∣∣∣∣∣∣∣
1 3 −1 1

0 1 −1 −2

0 0 2 11

0 0 1 −22

∣∣∣∣∣∣∣∣∣
−2R4+R3======= 2

∣∣∣∣∣∣∣∣∣
1 3 −1 1

0 1 −1 −2

0 0 0 55

0 0 1 −22

∣∣∣∣∣∣∣∣∣
R4↔R3====== −2

∣∣∣∣∣∣∣∣∣
1 3 −1 1

0 1 −1 −2

0 0 1 −22

0 0 0 55

∣∣∣∣∣∣∣∣∣
= −2× 1× 1× 1× 55 = −110.

�

9.4 Examples

Example 9.4.1: Compute ∣∣∣∣∣∣∣∣∣∣
1 a1 a2 a3

1 a1 + b1 a2 a3

1 a1 a2 + b2 a3

1 a1 a2 a3 + b3.

∣∣∣∣∣∣∣∣∣∣
.
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The above is∣∣∣∣∣∣∣∣∣
1 a1 a2 a3
1 a1 + b1 a2 a3
1 a1 a2 + b2 a3
1 a1 a2 a3 + b3

∣∣∣∣∣∣∣∣∣
−R1+R2
−R1+R3=======
−R1+R4

∣∣∣∣∣∣∣∣∣
1 a1 a2 a3
0 b1 0 0

0 0 b2 0

0 0 0 b3

∣∣∣∣∣∣∣∣∣
= b1b2b3. (upper triangular matrix)

�

Example 9.4.2: Let An be an n× n matrix

x 1 1 · · · 1

1 x 1 · · · 1

1 1 x · · · 1
...

...
...

... 1

1 1 1 · · · x︸ ︷︷ ︸
n




n

Find det(An).

Add columns 2,3,. . . , n to column 1.

det(An) =

∣∣∣∣∣∣∣∣∣∣∣

x+ (n− 1) 1 1 · · · 1

x+ (n− 1) x 1 · · · 1

x+ (n− 1) 1 x · · · 1
...

...
... . . . 1

x+ (n− 1) 1 1 · · · x︸ ︷︷ ︸
n

∣∣∣∣∣∣∣∣∣∣∣


n = (x+ (n− 1))

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1

1 x 1 · · · 1

1 1 x · · · 1
...

...
... . . . 1

1 1 1 · · · x︸ ︷︷ ︸
n

∣∣∣∣∣∣∣∣∣∣∣


n

Applying −C1 + C2, C1 + C3, . . . ,−C1 + Cn. The determinant is

(x+ (n− 1))

∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0

1 x− 1 0 · · · 0

1 0 x− 1 · · · 0
...

...
... . . . 0

1 0 0 · · · x− 1︸ ︷︷ ︸
n

∣∣∣∣∣∣∣∣∣∣∣


n = (x+ n− 1)(x− 1)n−1.

The last step follows by the fact that the matrix on the left hand side is the
lower triangular matrix. �

Example 9.4.3: Let Bn be an n× n matrix in the form

1− a1 a2 0 · · · 0 0

−1 1− a2 a3 · · · 0 0

0 −1 1− a3 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1− an−1 an

0 0 0 · · · −1 1− an


.
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1. Show that det(Bn) = det(Bn−1) + (−1)n(a1a2 · · · an).

2. Hence show det(Bn) = 1 +
n∑

i=1
(−1)i(a1a2 · · · ai).

Answer:

1. By adding R1, . . . ,Rn−1 to Rn, we have

det(Bn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− a1 a2 0 · · · 0 0

−1 1− a2 a3 · · · 0 0

0 −1 1− a3 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1− an−1 an

−a1 0 0 · · · 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Expand along the last row, the above determinant is

(−1)n+1(−a1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

a2 0 · · · 0 0

1− a2 a3 · · · 0 0

−1 1− a3 · · · 0 0
...

...
...

...

0 0 · · · 1− an−1 an

∣∣∣∣∣∣∣∣∣∣∣∣∣
+(−1)n+n

∣∣∣∣∣∣∣∣∣∣∣∣∣

1− a1 a2 0 · · · 0

−1 1− a2 a3 · · · 0

0 −1 1− a3 · · · 0
...

...
...

...

0 0 0 · · · 1− an−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The first matrix is a lower triangular matrix, so the determinant is the product of the diagonal entries,

the second matrix is Bn−1. Thus,

det(Bn) = (−1)n(a1 · · · an) + det(Bn−1).

2. We prove the result by mathematical induction:

Step 1: The formula is valid for n = 1: det(B1) = 1− a1.

Step 2: Suppose the formula is true for n = k, we want to show that the formula is true for n = k+1:

det(Bk+1) = (−1)k+1(a1 · · · ak+1) + det(Bk)

= 1 +
k∑

i=1

(−1)i(a1a2 · · · ai) + (−1)k+1(a1 · · · ak+1)

= 1 +
k+1∑
i=1

(−1)i(a1 · · · ai).

The formula is true for n = k + 1.

Step 3: By mathematical induction, the formula is valid for all positive integer.

Explanation: The formula is true for k = 1, then it is true for k + 1 = 2, so true for k + 1 = 3, etc.

Hence true for all integers. This process is called mathematical induction.

Example 9.4.4: Let Cn be an n× n matrix given by

Cn =



x a a · · · a a

−a x a · · · a a

−a −a x · · · a a
...

...
...

. . .
...

...

−a −a −a · · · x a

−a −a −a · · · −a x︸ ︷︷ ︸
n




n
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1. Show that det(Cn) = a(x+ a)n−1 + (x− a) det(Cn−1).

2. Show that det(Cn) =
1
2((x+ a)n + (x− a)n).

Leave to students as an exercise.

Example 9.4.5: (Vandermonde Determinant) This is the most important example of determinant.

Let

Vn =



1 1 1 · · · 1

a1 a2 a3 · · · an

a21 a22 a23 · · · a2n
...

...
...

...
...

an−2
1 an−2

2 an−2
3 · · · an−2

n

an−1
1 an−1

2 an−1
3 · · · an−1

n


,

where n ≥ 2.

1. det(Vn) = det(Vn−1)
n−1∏
i=1

(an − ai).

2. det(Vn) =
∏

1≤i<j≤n
(aj − ai).

Answer:

1. Applying −anRn−1 +Rn, −anRn−2 +Rn−1, . . . , −anR1 +R2, we have

det(Vn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1

a1 − an a2 − an a3 − an · · · 0

a21 − a1an a22 − a2an a23 − a3an · · · 0
...

...
...

...
...

an−2
1 − an−3

1 an an−2
2 − an−3

2 an an−2
3 − an−3

3 an · · · 0

an−1
1 − an−2

1 an an−1
2 − an−2

2 an an−1
3 − an−2

3 an · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Expanding along the last column:

(−1)1+n

∣∣∣∣∣∣∣∣∣∣∣∣

a1 − an a2 − an a3 − an · · · an−1 − an
a1(a1 − an) a2(a2 − an) a3(a3 − an) · · · an−1(an−1 − an)

...
...

...
...

...

an−3
1 (a1 − an) an−3

2 (a2 − an) an−3
3 (a3 − an) · · · an−3

n−1(an−1 − an)

an−2
1 (a1 − an) an−2

2 (a2 − an) an−2
3 (a3 − an) · · · an−2

n−1(an−1 − an)

∣∣∣∣∣∣∣∣∣∣∣∣
.

Pull out factor a1 − an from column 1, a2 − an from column 2, . . . , an−1 − an
from column n− 1
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= (−1)n−1(a1 − an)(a2 − an) · · · (an−1 − an)

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1

a1 a2 a3 · · · an−1

a21 a22 a23 · · · a2n−1
...

...
...

...
...

an−2
1 an−2

2 an−2
3 · · · an−2

n−1

∣∣∣∣∣∣∣∣∣∣∣∣
= (an − a1) · · · (an − an−1) det(Vn−1) = det(Vn−1)

n−1∏
i=1

(an − ai).

2. Again by mathematical induction:

Step 1: When n = 2, ∣∣∣∣∣ 1 1

a1 a2

∣∣∣∣∣ = a2 − a1.

So the formula is valid for n = 2.

Step 2: Suppose the statement is true for n = k, i.e.,

det(Vk) =
∏

1≤i<j≤k

(aj − ai).

Then for n = k + 1

det(Vk+1) = det(Vk)
k∏

i=1

(ak+1−ai) =
∏

1≤i<j≤k

(aj−ai)
k∏

i=1

(ak+1−ai) =
∏

1≤i<j≤k+1

(aj−ai).

The formula is valid for n = k + 1.

Step 3: By mathematical induction, the formula is valid for all n ≥ 2.

Or without mathematical induction, you can simple repeat the steps

again and again until n = 2.

�

9.5 More Properties of Determinants

By Theorems 9.3.4, 9.3.5 and 9.3.2 we have

Corollary 9.5.1:

1. Let In
Ri↔Rj−−−−−→ E, i ̸= j. Then det(E) = −1.

2. Let In
cRi−−→ E. Then det(E) = c.

Prepared by Prof. W.C. Shiu MATH1030 Linear Algebra-I 20/21-9-12



3. Let In
cRi+Rj−−−−−→ E, i ̸= j. Then det(E) = 1.

Corollary 9.5.2: Let A be a square matrix. Let B be the matrix obtained from A by applying an

elementary row operation on A. Let E be obtained by applying the same row operation on In. Then

B = EA and det(B) = det(EA) = det(E) det(A).

Proof: By Theorem 5.4.4, B = EA. The last result follows from Theorems 9.3.4, 9.3.5 and 9.3.2 and

Corollary 9.5.1. �

Theorem 9.5.3: A is nonsingular if and only if det(A) ̸= 0.

Proof: Suppose A is nonsingular. By Theorem 8.3.7 A is row equivalent to In. By Corollary 3.1.4,

A = PIn = P , where P is a product of elementary matrices. Applying Corollaries 9.5.2 and 9.5.1

repeatedly we have det(A) ̸= 0.

Suppose A ∈ Mn is singular. By Theorem 5.4.4 and 8.3.7, PA = rref(A) with rank(A) < n, where P

is a product of elementary matrices. Hence rref(A) has a zero row. Therefore det(PA) = 0. Applying

Corollary 9.5.2 repeatedly, det(PA) = det(P ) det(A). Since P is a product of elementary matrices

(invertible), det(P ) ̸= 0. So det(A) = 0. �
In fact we have the following stronger result:

Theorem 9.5.4: Suppose A,B ∈ Mn. Then

det(AB) = det(A) det(B).

Proof: Suppose A is nonsingular. By Theorem 8.3.7, A is row equivalent to In. By Theorem 5.4.4, A is a

product of elementary matrices. Applying Corollary 9.5.2 repeatedly we have det(AB) = det(A) det(B).

Suppose A is singular. By Theorem 5.3.3. AB is singular. By Theorem 9.5.3, det(A) = 0 and

det(AB) = 0. Hence det(AB) = det(A) det(B) = 0.

�

Corollary 9.5.5: If A is invertible, then det(A−1) = [det(A)]−1.

Theorem 9.5.6 (Cramer’s rule): Let A be an invertible matrix of order n. Let b ∈ Rn. Let Mk be the

square matrix by replacing the k-th column of A by b. If

x = (x1, x2, . . . , xn)
t

is a solution of Ax = b, then

xk =
det(Mk)

det(A)

where k = 1, . . . , n.

Proof: Since A is invertible, Ax = b has a unique solution.

Let Xk be the matrix obtained from the identity matrix In by replacing column

k with x. Note that

Ax = b and Aei = A∗i for i ̸= k.

Thus,

AXk = Mk.
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Expanding Xk along the row k, we have

det(Xk) = xk det(In−1) = xk.

So

det(Mk) = det(AXk) = det(A) det(Xk) = det(A)xk.

Therefore,

xk =
det(Mk)

det(A)
.

�

Example 9.5.1: Using Carmer’s rule to solve the following system of linear equation.

x1 + 2x2 + 3x3 = 2

x1 + x3 = 3

x1 + x2 − x3 = 1

Solution: Let

A =

 1 2 3

1 0 1

1 1 −1

 , b =

 2

3

1

 . We get det(A) = 6.

Now

M1 =

 2 2 3

3 0 1

1 1 −1

 , and we have det(M1) = 15;

M2 =

 1 2 3

1 3 1

1 1 −1

 , and we have det(M2) = −6;

M3 =

 1 2 2

1 0 3

1 1 1

 , and we have det(M3) = 3.

So,

x1 =
det(M1)

det(A)
=

15

6
=

5

2
;

x2 =
det(M2)

det(A)
=

−6

6
= −1;

x3 =
det(M3)

det(A)
=

3

6
=

1

2
.

Thus, the solution is  x1
x2
x3

 =

 5
2

−1
1
2
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or you may write the solution as (x1, x2, x3) = (52 ,−1, 12). �

Theorem 9.5.7 (Formula for inverse): Suppose A ∈ Mn is an invertible matrix. Then

[A−1]ji =
(−1)i+j det(A(i|j))

det(A)
.

Pay attention to the order of the indices i and j!

Proof: For convenience, write B = A−1. That is, AB = In. Hence

AB∗i = ei, for 1 ≤ i ≤ n.

So, the vector B∗i is a solution of Ax = ei. We can use Theorem 9.5.6 to find B∗i.

Let Mj be the square matrix by replacing the j-th column of A by ei. Expand

along the j-th column of Mj, we have

det(Mj) = (−1)i+j det(Mj(i|j)) = (−1)i+j det(A(i|j)).

Then the j-th coordinate of B∗i is given by

[B]ji = [B∗i]j =
det(Mj)

det(A)
=

(−1)i+j det(A(i|j))
det(A)

.

�
Let C be the square matrix of order n whose (i, j)-the entry is defined by (−1)i+j det(A(i|j)), i.e.,

[C]ij = (−1)i+j det(A(i|j)) = det(A)[B]ji.

In many textbooks, the matrix C is called the cofactor matrix of A. The transpose of C, Ct, is called

the adjoint matrix of A which is denoted by adj(A). So adj(A) = Ct = det(A)B and we have

A−1 = B =
1

det(A)
adj(A).

In general, the formula

Aadj(A) = det(A)In = adj(A)A

always holds.

Example 9.5.2: By the above formula, find the inverse of

A =

 1 2 3

1 0 1

1 1 −1

 .

Solution: Firstly we have det(A) = 6.

A(1|1) =

(
0 1

1 −1

)
, det(A(1|1))= −1; A(1|2) =

(
1 1

1 −1

)
, det(A(1|2))= −2;

A(1|3) =

(
1 0

1 1

)
, det(A(1|3)) = 1; A(2|1) =

(
2 3

1 −1

)
, det(A(2|1))= −5;

A(2|2) =

(
1 3

1 −1

)
, det(A(2|2))= −4; A(2|3) =

(
1 2

1 1

)
, det(A(2|3))= −1;

A(3|1) =

(
2 3

0 1

)
, det(A(3|1)) = 2; A(3|2) =

(
1 3

1 1

)
, det(A(3|2))= −2;

A(3|3) =

(
1 2

1 0

)
, det(A(3|3))= −2.

Prepared by Prof. W.C. Shiu MATH1030 Linear Algebra-I 20/21-9-15



A−1 =
1

det(A)

 det(A(1|1)) − det(A(2|1)) det(A(3|1))
− det(A(1|2)) det(A(2|2)) − det(A(3|2))
det(A(1|3)) − det(A(2|3)) det(A(3|3))

 =

 −1
6

5
6

1
3

1
3 −2

3
1
3

1
6

1
6 −1

3

 .

Or adj(A) =

 det(A(1|1)) − det(A(1|2)) det(A(1|3))
− det(A(2|1)) det(A(2|2)) − det(A(2|3))
det(A(3|1)) − det(A(3|2)) det(A(3|3))


t

=

 −1 5 2

2 −4 2

1 1 −2

.

So

A−1 =
1

6
adj(A) =

 −1
6

5
6

1
3

1
3 −2

3
1
3

1
6

1
6 −1

3

 .

�

Prepared by Prof. W.C. Shiu MATH1030 Linear Algebra-I 20/21-9-16


