
Chapter 8: Bases and Dimension

8.1 Basis

Definition 8.1.1: Let V be a vector space. Then a subset B of V is said to be a basis for V if

1. B is linearly independent.

2. ⟨B⟩ = V , i.e., B spans V .

Remark: Most of the time V is a subspace of Rm. Occasionally V is assumed to be a subspace of Mm,n

or Pn. It does not hurt to assume V is a subspace of Rm.

Example 8.1.1: Let V = Rm. Then B = {e1, . . . , em} is a basis for V (recall that all the entries of ei

is zero, except the i-th entry being 1). It is called the standard basis.

Answer: Obviously B is linearly independent.

Also, for any α = (v1, . . . , vm)t ∈ V , α =
m∑
i=1

viei ∈ ⟨B⟩. So ⟨B⟩ = V . �

Example 8.1.2: A vector space can have different bases. Example, B = {e1, e2} is a basis and

A =

{(
1

0

)
,

(
1

1

)}
is also a basis for R2.

Example 8.1 Math major only: V = M2,2. Let

E1,1 =

[
1 0

0 0

]
, E1,2 =

[
0 1

0 0

]
,

E2,1 =

[
0 0

1 0

]
, E2,2 =

[
0 0

0 1

]
,

Then B = {E1,1, E1,2, E2,1, E2,2} is a basis for V .

Check:

Obviously B is linearly independent (exercise).

Also for any A ∈ V ,

A =

[
a b

c d

]
= aE1,1 + bE1,2 + cE2,1 + dE2,2.

So ⟨B⟩ = M2,2.

Example 8.2 Math major only: Let V = Mm,n. For 1 ≤ i ≤ m, 1 ≤ j ≤ n, let Ei,j be the m × n

matrix with (i, j)-th entry equal to 1 and all other entries equal to 0.

Then {Ei,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n} is a basis for V . (exercise).

Example 8.3 Math major only: Let V = Pn.

Then 1, x, x2, . . . , xn is a basis.

It is easy to show that S = {1, x, x2, . . . , xn} is linearly independent.

Also any polynomial

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

is a linear combinations of S.
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Combining Theorems 7.2.8 and 7.3.5 we have

Theorem 8.1.2: Suppose that A is a square matrix of order m. The columns of A form a basis for Rm

if and only if A is nonsingular.

From Theorem 7.3.5 we have

Theorem 8.1.3: Let S be a finite subset of Rm. Then basis for ⟨S⟩ exists. In fact, there exists a subset

T of S such that T is a basis for ⟨S⟩.

This theorem can be extended to any vector space, for example a subspace of Mm,n. Following is an

extension.

Theorem 8.1.4: Let S = {α1, . . . , αn} be a finite subset of a vector space. Then basis for ⟨S⟩ exists.

In fact, there exists a subset B of S such that B is a basis for ⟨S⟩.

Before to prove the above theorem we show a useful lemma first.

Lemma 8.1.5: Let S be a finite subset of a vector space. If α ∈ S is linearly dependent on other vectors

in S, then ⟨S⟩ = ⟨S \ {α}⟩.

Proof: It is clearly that ⟨S \ {α}⟩ ⊆ ⟨S⟩. So, we only need to show that ⟨S⟩ ⊆ ⟨S \ {α}⟩.

By the hypothesis α =
∑s

i=1 aiαi, where ai ∈ R and αi ∈ S \ {α}, 1 ≤ i ≤ s.
By Lemma 7.3.4, we have ⟨S⟩ ⊆ ⟨S \ {α}⟩. The proof is completed. �

Proof of Theorem 8.1.4:

If S is linearly independent, then S is the required basis.

So, we assume that S is linearly dependent. By Theorem 7.2.10, there is a k

such that αk is a linear combination of α1, . . . , αj where j < k. By Lemma 8.1.5,

⟨S⟩ = ⟨S \ {αk}⟩.
If S1 = S \ {αk} is linearly independent, then S1 is a required basis. If not, we

may repeated the above procedure to remove one more vector to obtain a subset

S2.

Continue this procedure until we get a subset that is linearly independent.
The last obtained subset is a required basis. �

8.2 Dimension

Theorem 8.2.1 (Steintz Replacement Theorem): Let V be a vector space. Suppose V = ⟨α1, . . . , αn⟩.
Then every linearly independent set {β1, . . . , βm} contains at most n elements.

Proof: Since β1 ∈ V and V = ⟨α1, . . . , αn⟩, β1 =
n∑

i=1
aiαi for some ai ∈ R. Since

β1 ̸= 0, not all ai can be zero. Without loss of generality, we may assume that

a1 ≠ 0. Thus α1 is linearly dependent on {β1, α2, . . . , αn}. By Lemma 8.1.5,

V = ⟨β1, α2, . . . , αn⟩.
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Now as β2 ∈ V if any, we have β2 = b1β1 +
n∑

i=2
ciαi for some b1, c2 . . . , cn ∈ R.

Since β1 and β2 are linearly independent, at least one of ci is non-zero. Again, we

assume that c2 ̸= 0. Hence α2 is linearly dependent on {β1, β2, α3, . . . , αn}. By
Lemma 8.1.5, V = ⟨β1, β2, α3, . . . , αn⟩.

Continuing this process, at the k-th step (k ≤ n) we have

V = ⟨β1, β2, . . . , βk, αk+1, . . . , αn⟩ .

If k < n, then by the above argument {β1, β2, . . . , βk, βk+1, αk+1, . . . , αn} is

linearly dependent and so one of αi, i > k, is linearly dependent on the other vec-

tors. After renumbering {αk+1, . . . , αn} if necessary, we may assume that it is αk+1.

Then we replace αk+1 by βk+1 and obtain that V = ⟨β1, β2, . . . , βk, βk+1, αk+2, . . . , αn⟩.
Now if n < m, then the above process enables us to obtain a spanning set

{β1, β2, . . . , βn}. But βn+1 ∈ V , so βn+1 is linearly dependent on β1, β2, . . . , βn.
This contradicts the fact that {β1, β2, . . . , βm} is linearly independent. Therefore,
we have m ≤ n. �

Corollary 8.2.2: If a vector space has one basis with n elements, then all the other bases also have n

elements.

Proof: Suppose A = {α1, . . . , αn} and B = {β1, . . . , βm} are bases of a vector space. Since V = ⟨A ⟩
and B is linearly independent, by Theorem 8.2.1 m ≤ n.

We change the role of A and B, we will obtain that n ≤ m.

Hence m = n. �

Definition 8.2.3: Let V be a nonzero vector space. Suppose {α1, . . . , αt} is a basis for V . Then t is

called the dimension of V and is denoted by t = dimV and V is called a finite dimensional vector space.

For convenience, we define dim{0} = 0.

Remark 8.2.4: By Corollary 8.2.2, the dimension is well-defined if a vector space contains a basis. So

the next question is whether a vector space has a basis.

Corollary 8.2.5: Suppose m > n. Then any m vectors in an n-dimensional vector space must be

linearly dependent.

Corollary 8.2.5 just follows from Theorem 8.2.1. We provide a directed proof for Corollary 8.2.5 as follows:

Proof: Suppose that S = {v1, . . . ,vn} is a basis of the vector space V . Let R = {u1, . . . ,um}, where
m > n. We will now construct a nontrivial relation of linear dependence on R.

Since ⟨S⟩ = V , each ui can be written as a linear combination of the vectors in S. This means there
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exist aij ∈ R, 1 ≤ i ≤ n, 1 ≤ j ≤ m, such that

u1 = a11v1 + a21v2 + · · ·+ an1vn =

n∑
i=1

ai1vi

u2 = a12v1 + a22v2 + · · ·+ an2vn =

n∑
i=1

ai2vi

...
...

um = a1mv1 + a2mv2 + · · ·+ anmvn =

n∑
i=1

aimvi

Now we form the homogeneous system of n equations in the m unkowns, x1, x2, . . . , xm, where the

coefficients are the just-discovered scalars aij ,

m∑
j=1

a1jxj = a11x1 + a12x2 + · · ·+ a1mxm = 0

m∑
j=1

a2jxj = a21x1 + a22x2 + · · ·+ a2mxm = 0

...
...

m∑
j=1

anjxj = an1x1 + an2x2 + · · ·+ anmxm = 0

This is a homogeneous system with more unknowns than equations. So there are infinitely many solutions.

Choose a nontrivial solution and denote it by x1 = c1, x2 = c2, . . ., xm = cm. As a solution to the

homogeneous system, we then have

m∑
j=1

a1jcj = a11c1 + a12c2 + · · ·+ a1mcm = 0

m∑
j=1

a2jcj = a21c1 + a22c2 + · · ·+ a2mcm = 0

...
...

m∑
j=1

anjcj = an1c1 + an2c2 + · · ·+ anmcm = 0

The scalars c1, c2, . . . , cm will provide the nontrivial relation of linear dependence we desire,

c1u1 + c2u2 + · · ·+ cmum =

m∑
j

cjuj

=

m∑
j

cj

(
n∑
i

aijvi

)
=

m∑
j

n∑
i

cjaijvi =

n∑
i

m∑
j

cjaijvi

=
n∑
i

 m∑
j

aijcj

vi =
n∑
i

0vi = 0.

Hence R is linearly dependent. �

Example 8.4 Math major only: dimRm = m.

Example 8.5 Math major only: dimMmn = mn. See Example 8.2.
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Example 8.6 Math major only: dimPn = n+ 1. See Example 8.3.

Example 8.7 Math major only: Let S2 be the set of 2× 2 symmetric matrices. For A ∈ S2,

A =

[
a b

b c

]
= a

[
1 0

0 0

]
+ b

[
0 1

1 0

]
+ c

[
0 0

0 1

]

We can show that

B =

{[
1 0

0 0

]
,

[
0 1

1 0

]
,

[
0 0

0 1

]}
is a basis for S2. Hence dimS2 = 3.

Example 8.8 Math major only: Let R[x] be the set of all real polynomials. As {1, x, x2, x3, . . .}
being linearly independent, so dimR[x] does not exist (or we can write dimR[x] = ∞).

Lemma 8.2.6: Let V be a vector space and α1, . . . , αk, α ∈ V . Suppose S = {α1, . . . , αk} is linearly

independent and α /∈ ⟨S⟩. Then S′ = {α1, . . . , αk, α} is linearly independent.

Proof: Let the relation of linear dependence of S′ be

a1α1 + · · ·+ akαk + aα = 0.

Suppose a ̸= 0. Then

α = −a1
a
α1 − · · · − ak

a
αk ∈ ⟨S⟩ ,

which is a contradiction.

So a = 0. Thus

a1α1 + · · ·+ akαk = 0.

By the linear independence of S, ai = 0 for all i. Hence the above relation of
dependence of S ′ is trivial. That is, S ′ is linearly independent. �

Theorem 8.2.7: In a finite dimensional vector space, any linearly independent set of vectors can be

extended to a basis.

Proof: Let {β1, . . . , βn} be a linearly independent set in anm-dimensional vector space V . Let {α1, . . . , αm}
be a basis of V . Clearly n ≤ m and {β1, . . . , βn, α1, . . . , αm} spans V . If n = 0, then there is nothing

to prove. So we assume n > 0. Thus {β1, . . . , βn, α1, . . . , αm} is linearly dependent. Then there are

b1, . . . , bn, a1, . . . , am ∈ R not all zero such that
n∑

i=1
biβi+

m∑
j=1

ajαj = 0. We claim that at least one aj ̸= 0.

For otherwise, if all the aj ’s are zero, then we have
n∑

i=1
biβi = 0 and by the assumption, b1 = · · · = bn = 0.

This is impossible.

Thus by Lemma 8.2.6 {β1, . . . , βn, α1, . . . , αj−1, αj+1, . . . αm} still spans V . If n > 1, then this set is

linearly dependent and we can apply the above argument to discard another αj and still obtain a spanning

set of V . We continue this process until we get m spanning vectors, n of which are β1, . . . , βn. This is a

required basis. �

Remark 8.2.8: From the proof above, we see that there are more than one way of extending a linearly

independent set to a basis.
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Let V be a finite dimensional vector space and let W be a subspace of V . What is the dimension of

W? That means whether W contains a basis. Is there any relation between the dimension of W and the

dimension of V ? We shall answer these questions below.

Theorem 8.2.9: A subspace W of an m-dimensional vector space V is a finite dimensional vector space

of dimension at most m.

Proof: If W = {0}, then W is 0-dimensional.

Assume W ̸= {0}. Then there exists α1 ∈ W with α1 ̸= 0. If ⟨α1⟩ = W , then

W is 1-dimensional. Otherwise, choose α2 ∈ W \⟨α1⟩. By Lemma 8.2.6 {α1, α2} is

linearly independent. Continuing in this fashion, after k steps, we have a linearly

independent set {α1, . . . , αk}. Suppose ⟨α1, . . . , αk⟩ ̸= W . Choose αk+1 ∈ W \
⟨α1, . . . , αk⟩. By Lemma 8.2.6 {α1, . . . , αk, αk+1} is linearly independent.

This process cannot go on infinitely, for otherwise we would obtain more than

m linearly independent vectors in V . Hence there must be an integer n such that

⟨α1, . . . , αn⟩ = W . Thus dimW = n and clearly n ≤ m. �

Corollary 8.2.10: Let V be a subspace of Rm. There exists a basis for V .

Corollary 8.2.11: Let S = {α1, . . . , αn} ⊆ Rm. Then dim ⟨S⟩ ≤ n and dim ⟨S⟩ ≤ m.

Theorem 8.2.12: Let W be a subspace of V with a basis B = {α1, . . . , αn}. Assume that dimV = m.

Then there exists a basis B ∪ {αn+1, . . . , αm} of V for some vectors αn+1, . . . , αm in V .

Proof: This follows from Theorem 8.2.7. �

Remark 8.2.13: Every infinite dimensional vector space also has a basis. However to show this, we

have to require axiom of choice or apply Kuratowski-Zorn’s lemma, which is beyond the scope of this

course.

Theorem 8.2.14: Let V be an n-dimensional vector space and A = {α1, α2, . . . , αn} be a set of vectors

in V . Then the following statements are equivalent:

(a) A is a basis.

(b) A is linearly independent.

(c) V = ⟨A ⟩.

Proof:

(a)⇒(b): Clear.

(b)⇒(c): If ⟨A ⟩ ̸= V , then there is an α ∈ V \ ⟨A ⟩. By Lemma 8.2.6 A ∪ {α}
is linearly independent with n + 1 elements. By Corollary 8.2.5 it is

impossible.

(c)⇒(a): Suppose V = ⟨A ⟩. We have to show that A is linearly independent. Sup-
pose not, then by Theorem 7.2.10 there is a vector αk linearly dependent
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on α1, . . . , αk−1. Also by Lemma 8.2.6 V = ⟨α1, . . . , αk−1, αk+1, . . . , αn⟩.
By Theorem 8.2.1 dimV ≤ n− 1. This is impossible. �

Corollary 8.2.15: Suppose W1 and W2 are two subspaces of V . If W1 ⊆ W2 and dimW1 = dimW2 <

∞, then W1 = W2.

Proof: Suppose {α1, . . . , αm} is a basis of W1. Then {α1, . . . , αm} ⊂ W2 is linearly independent. Since

dimW1 = dimW2, by Theorem 8.2.14 it is also a basis of W2. Therefore, W1 = W2. �

Remark 8.2.16: The condition W1 ⊆ W2 is crucial. For taking W1 =
⟨
(1, 0)t

⟩
and W2 =

⟨
(0, 1)t

⟩
, it is

easy to see that W1 ̸= W2 yet dimW1 = dimW2 = 1.

8.3 Ranks and Nullity of a Matrix

Since the RREF of a matrix A is unique, the number of non-zero rows of the RREF of A is denoted by

r(A), which is called the rank of A (has already been defined in Chapter 5).

Definition 8.3.1: Suppose that A ∈ Mm,n.

1. The nullity of A is the dimension of the null space of A, i.e., n(A) = dim(N (A)).

2. The column rank of A is the dimension of the column space of A, colrank(A) = dim(C(A)).

3. The row rank of A is the dimension of the row space of A, rowrank(A) = dim(R(A)).

By Theorem 7.3.5, we have

Theorem 8.3.2: Suppose that A ∈ Mm,n. Then r(A) = colrank(A).

In other sections of MATH1030, r(A) is defined to be colrank(A) directly.

Example 8.3.1: Let us compute the rank and nullity of

A =



2 −4 −1 3 2 1 −4

1 −2 0 0 4 0 1

−2 4 1 0 −5 −4 −8

1 −2 1 1 6 1 −3

2 −4 −1 1 4 −2 −1

−1 2 3 −1 6 3 −1


.

We have

rref(A) =



1O −2 0 0 4 0 1

0 0 1O 0 3 0 −2

0 0 0 1O −1 0 −3

0 0 0 0 0 1O 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0


.

From rref(A) we record D = {1, 3, 4, 6} and F = {2, 5, 7}.
By Theorem 7.2.10, {A∗1, A∗3, A∗4, A∗6} is a basis of C(A). So r(A) = colrank(A) = 4.

By Theorem 7.2.9, {(2, 1, 0, 0, 0, 0, 0)t, (−4, 0,−3, 1, 1, 0, 0)t, (−1, 0, 2, 3, 0,−1, 1)t} is a basis of N (A).

Hence n(A) = 3.

Now we have r(A) + n(A) = 4 + 3 = 7 = the number of column of A. �
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Theorems 7.2.9 and 7.2.10 show that

Theorem 8.3.3 (Dimension Formula): Suppose A ∈ Mm,n. Then

r(A) + n(A) = n.

Corollary 8.3.4: Let A be an m× n matrix. Then

r(A) = r(At).

Equivalently

dim C(A) = dimR(A).

Proof: Let H = rref(A) and r = r(A). By the above discussion r is the number of
non-zero rows of H. By Theorem 7.4.3, the first r columns of H t form a basis for
R(A). Thus, r = dim(R(A)) = dim(C(At)) = r(At). �

Corollary 8.3.5: Let A be an m× n matrix. Then

r(A) = rowrank(A).

Theorem 8.3.6: Suppose that A ∈ Mn. The following are equivalent.

1. A is nonsingular.

2. r(A) = n.

3. n(A) = 0.

Proof:

(1 ⇒ 2) If A is nonsingular, then C(A) = Rn. Thus n = dim C(A) = r(A).

(2 ⇒ 3) Suppose r(A) = n. Then the dimension formula gives

n(A) = n− r(A) = n− n = 0.

(3 ⇒ 1) Suppose n(A) = 0. So a basis for the null space of A is the empty set.

This implies that N (A) = {0} and hence A is nonsingular.

�
With a new equivalence for a nonsingular matrix, we can update Theorem 7.2.8 which becomes a list

requiring double digits to number.

Theorem 8.3.7: Suppose that A ∈ Mn. The following are equivalent.

1. A is nonsingular.

2. A is row equivalent to In.

3. N (A) = {0n}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. A is invertible. Skip it if Chapter 5 has not been taught.
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6. The columns of A form a linearly independent set.

7. The column space of A is Rn, i.e., C(A) = Rn.

8. The columns of A form a basis for Rn.

9. The rank of A is n, i.e., r(A) = n.

10. The nullity of A is zero, i.e., n(A) = 0.
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