
Chapter 7: Linear Independence, Column and Row Spaces

7.1 Span by Fewer Vectors

Example 7.1.1: Let α1 = (2,−3, 1)t, α2 = (1, 4, 1)t, α3 = (7,−5, 4)t and α4 = (−7,−6,−5)t. Let

W = ⟨α1, α2, α3, α4⟩.
Let

D =
(
α1 α2 α3 α4

)
=

 2 1 7 −7

−3 4 −5 −6

1 1 4 −5

 .

Check that the vector β = (2, 3, 0, 1)t is a solution to the homogeneous system Dx = 03. That is,

2α1 + 3α2 + 0α3 + 1α4 = 03.

We may rewrite it as

α4 = (−2)α1 + (−3)α2.

This equation says that whenever we encounter the vector α4, we can replace it with a specific linear

combination of the vectors α1 and α2. So using α4 in the spanning set of W along with α1 and α2 is

excessive.

Since any linear combination of α1, α2, α3, α4

aα1 + bα2 + cα3 + dα4

= aα1 + bα2 + cα3 + d((−2)α1 + (−3)α2)

= (a− 2d)α1 + (b− 3d)α2 + cα3

can be rewritten as a linear combination of α1, α2, α3. So W = ⟨α1, α2, α3⟩.
So the span of our set of vectors, W , has not changed, but we have described it by the span of a set

of three vectors, rather than four. Furthermore, we can achieve yet another, similar, reduction.

Check that the vector

γ = (−3,−1, 1, 0)t

is a solution to the homogeneous system Dx = 03. We can write the linear combination,

(−3)α1 + (−1)α2 + 1α3 = 03.

We can solve for α3,

α3 = 3α1 + 1α2.

This equation says that whenever we encounter the vector α3, we can replace it with a specific linear

combination of the vectors α1 and α2. So, as before, the vector α3 is not needed in the description of W ,

provided we have α1 and α2 available. So

W = ⟨α1, α2⟩ .

From the above equation, we may also obtain α2 = −3α1 + α3 and α1 = −1
3α2 +

1
3α3. So we may get

that W = ⟨α1, α3⟩ = ⟨α2, α3⟩. �
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So W began life as the span of a set of four vectors, and we have now shown (utilizing solutions to

a homogeneous system) that W can also be described as the span of a set of just two vectors. Convince

yourself that we cannot go any further. In other words, it is not possible to dismiss either α1 or α2

in a similar fashion and winnow the set down to just one vector. What was it about the original set

of four vectors that allowed us to declare certain vectors as surplus? And just which vectors were we

able to dismiss? And why did we have to stop once we had two vectors remaining? The answers to

these questions motivate linear independence our next section and next definition, and so are worth

considering carefully now.

7.2 Linearly Independent

Definition 7.2.1: Given a set of vectors S = {α1, . . . , αn}, a true statement of the form

a1α1 + · · ·+ anαn = 0

is a relation of linear dependence (or linear relation) on S. If this statement is formed in a trivial fashion,

i.e., ai = 0, 1 ≤ i ≤ n, then we say it is the trivial relation of linear dependence on S.

Definition 7.2.2: The set of vectors S = {α1, . . . , αn} is linearly dependent if there is a relation of linear

dependence on S that is not trivial. We also say that the vectors α1, . . . , αn are linearly dependent. In the

case where the only relation of linear dependence on S is the trivial one, then S is a linearly independent

set of vectors. We also say that the vectors α1, . . . , αn are linearly independent.

Remark 7.2.3: In other word, α1, . . . , αn are linearly dependent if (and only if) there are a1, . . . , an ∈ R,

not all zero, such that
n∑

i=1
aiαi = 0.

Remark 7.2.4: To prove α1, . . . , αn are linearly independent, we need to start with a relation of linear

dependence and somehow conclude that the scalars involved must all be zero, i.e., that the relation of

linear dependence only happens in the trivial fashion. In mathematical (symbolic) statement�
�

�
a1α1 + · · ·+ anαn =

n∑
i=1

aiαi = 0 =⇒ ai = 0 ∀i.

Example 7.2.1: Consider the set of n = 4 vectors from R5,

S = {(2,−1, 3, 1, 2)t, (1, 2,−1, 5, 2)t, (2, 1,−3, 6, 1)t, (−6, 7,−1, 0, 1)t}.

To determine linear independence we first form a relation of linear dependence,

a1


2

−1

3

1

2

+ a2


1

2

−1

5

2

+ a3


2

1

−3

6

1

+ a4


−6

7

−1

0

1

 = 0.

We know that a1 = a2 = a3 = a4 = 0 is a solution to this equation, but that is of no interest

whatsoever. That is always the case, no matter what four vectors we might have chosen. We are curious
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to know if there are other, nontrivial, solutions. Row-reducing
2 1 2 −6

−1 2 1 7

3 −1 −3 −1

1 5 6 0

2 2 1 1


rref−−−→


1O 0 0 −2

0 1O 0 4

0 0 1O −3

0 0 0 0

0 0 0 0

 .

We could solve this homogeneous system completely, but for this example all we need is one nontrivial

solution.

Setting the free variable x4 to any nonzero value, such as x4 = 1, yields the

nontrivial solution

α =


2

−4

3

1

 .

We have

2


2

−1

3

1

2

+ (−4)


1

2

−1

5

2

+ 3


2

1

−3

6

1

+ 1


−6

7

−1

0

1

 = 0.

This is a nontrivial relation of linear dependence on S. So we conclude that S
is linearly dependent. �

Example 7.2.2: Consider the set of n = 4 vectors from R5,

T = {(2,−1, 3, 1, 2)t, (1, 2,−1, 5, 2)t, (2, 1,−3, 6, 1)t, (−6, 7,−1, 1, 1)t}.

To determine linear independence we first form a relation of linear dependence,

a1


2

−1

3

1

2

+ a2


1

2

−1

5

2

+ a3


2

1

−3

6

1

+ a4


−6

7

−1

1

1

 = 0.


2 1 2 −6

−1 2 1 7

3 −1 −3 −1

1 5 6 1

2 2 1 1


rref−−−→


1O 0 0 0

0 1O 0 0

0 0 1O 0

0 0 0 1O

0 0 0 0

 .

From the form of this matrix, we see that there are no free variables. So the solution is unique, and

because the system is homogeneous, this unique solution is the trivial solution. So we know that there is

only one way to combine the four vectors of T into a relation of linear dependence. And that one way is

the easy and obvious way. In this situation we say that T is linearly independent. �
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Theorem 7.2.5: Suppose that S = {α1, . . . , αn} ⊂ Rm and A is the m × n matrix whose columns are

the vectors in S. The following statements are equivalent:

(1) S is a linearly independent set,

(2) the homogeneous system Ax = 0m has a unique solution,

(3) r(A) = rank(A) = n.

Proof: [(2) ⇒ (1)] Suppose that Ax = 0m has a unique solution. Since it is a

homogeneous system, this solution must be the trivial solution 0n. This means

that the only relation of linear dependence on S is the trivial one. So S is linearly

independent.

[(3) ⇒ (2)] By Theorem 6.4.5, N (A) = {0n}. That is, 0n is the only solution. So

we have (2).
[(1) ⇒ (3)] We will prove the contrapositive. Suppose that rank(A) = r < n. By
Theorem 6.4.5, there are infinitely many solutions of the system Ax = 0m. This
implies that there is a nonzero solution α = (a1, . . . , an)

t ∈ Rn such that Aα = 0m.

This means that
n∑

i=1
aiαi = 0n is a nontrivial relation of linear dependence. Hence

S is linearly dependent. �

Example 7.2.3: Is the set of vectors

S = {(2,−1, 3, 1, 0, 3)t, (9,−6,−2, 3, 2, 1)t, (1, 1, 1, 0, 0, 1)t, (−3, 1, 4, 2, 1, 2)t, (6,−2, 1, 4, 3, 2)t}

linearly independent or linearly dependent?

Solution: Theorem 7.2.5 suggests we place these vectors into a matrix as columns and analyze the

row-reduced version of the matrix,

2 9 1 −3 6

−1 −6 1 1 −2

3 −2 1 4 1

1 3 0 2 4

0 2 0 1 3

3 1 1 2 2


rref−−−→



1O 0 0 0 −1

0 1O 0 0 1

0 0 1O 0 2

0 0 0 1O 1

0 0 0 0 0

0 0 0 0 0


.

Now we have r = 4 < 5 = n. By Theorem 7.2.5, S is a linearly dependent set. �

Example 7.2.4: Consider n = 9 vectors from R4

(−1, 3, 1, 2)t, (7, 1,−3, 6)t, (1, 2,−1,−2)t, (0, 4, 2, 9)t, (5,−2, 4, 3)t, (2, 1,−6, 4)t, (3, 0,−3, 1)t,

(1, 1, 5, 3)t, (−6,−1, 1, 1)t.

To employ Theorem 7.2.5, we form a 4× 9 matrix, C, whose columns are these vectors

C =


−1 7 1 0 5 2 3 1 −6

3 1 2 4 −2 1 0 1 −1

1 −3 −1 2 4 −6 −3 5 1

2 6 −2 9 3 4 1 3 1

 .
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To determine if the homogeneous system Cx = 0 has a unique solution or
not, we would normally row-reduce this matrix. But in this particular example,
we can do better. Theorem 3.4.3 tells us that since the system is homogeneous
with n = 9 unknowns in m = 4 equations, and n > m, there must be infinitely
many solutions. Since there is not a unique solution, Theorem 7.2.5 says the
set is linearly dependent. Or we may apply Theorem 5.5.6 that we get r(C) =
rank(C) ≤ min{4, 9} = 4 < 9 = n. By Theorem 7.2.5 says the set is linearly
dependent. �

Theorem 7.2.6: Suppose that S = {α1, . . . , αn} ⊂ Rm and n > m. Then S is a linearly dependent set.

Proof: Since rank
[
α1 · · · αn

]
≤ min{m,n} = m < n, by Theorem 7.2.5 S is

linearly dependent. �
We will now specialize to sets of n vectors from Rn. This will put Theorem 7.2.6 off-limits, while

Theorem 7.2.5 will involve square matrices.

Theorem 7.2.7: Suppose that A is a square matrix. Then A is nonsingular if and only if the columns

of A form a linearly independent set.

Proof:

A is nonsingular ⇐⇒ Ax = 0 has a unique solution

⇐⇒ columns of A are linearly independent.

�
Combining Theorem 6.4.4 and the above theorem, here is the update to Theorem 5.3.6.

Theorem 7.2.8: Suppose that A ∈ Mn. The following are equivalent.

1. A is nonsingular.

2. A is row equivalent to In.

3. N (A) = {0n}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. A is invertible. (Skip it if Chapter 5 has not been taught.)

6. The columns of A form a linearly independent set.

7. The columns of A span Rn.

We update to Theorem 6.4.5

Theorem 7.2.9: Suppose that A ∈ Mm,n and H = rref(A). Suppose that H has r leading columns, with

indices given by D = {d1, . . . , dr}, while the n− r non-leading columns have indices F = {f1, . . . , fn−r}.
Construct the n− r vectors αj, 1 ≤ j ≤ n− r, of length n,

[αj ]i =


1 if i ∈ F , i = fj

0 if i ∈ F , i ̸= fj

−[H]k,fj if i ∈ D, i = dk
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(1) N (A) = ⟨α1, . . . , αn−r⟩.

(2) α1, . . . , αn−r are linearly independent.

Proof: (1) was proved in Theorem 6.4.5.

To prove (2), we start with
n−r∑
i=1

aiαi = 0 for some ai ∈ R (see Remark 7.2.4). Note that [αj ]i = δfj ,i

for i ∈ F .

For each j, 1 ≤ j ≤ n− r, consider the equality of the individual entries of the

vectors on both sides of this equality in position fj,

0 = [0]fj =

[
n−r∑
i=1

aiαi

]
fj

=
n−r∑
i=1

[aiαi]fj =
n−r∑
i=1

ai[αi]fj

=
n−r∑
i=1

aiδfj ,fi = aj.

Thus, α1, . . . , αn−r are linearly independent. �

Example 7.2.5: Find the null space of

A =


−2 −1 −2 −4 4

−6 −5 −4 −4 6

10 7 7 10 −13

−7 −5 −6 −9 10

−4 −3 −4 −6 6


Solution:

A
rref−−−→


1O 0 0 1 −2

0 1O 0 −2 2

0 0 1O 2 −1

0 0 0 0 0

0 0 0 0 0

 .

x4 and x5 are free variables.

α1 corresponding to x4 = 1, x5 = 0 and α2 corresponding to x4 = 0, x5 = 1. We have

α1 =


−1

2

−2

1

0

 α2 =


2

−2

1

0

1

 .

By Theorem 7.2.9, N (A) = ⟨α1, α2⟩. �

Suppose a set contains a zero vector, say S = {0, α2, . . . , αn}. Then

10+ 0α2 + · · ·+ 0αn = 0.

Hence S is linearly dependent.

So, we only consider some finite sets containing non-zero vectors.
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Theorem 7.2.10: A set of non-zero vectors {α1, . . . , αn} is linearly dependent if and only if there is a

vector αk that is a linear combination of α1, α2, . . . , αj with j < k.

Proof: Suppose {α1, . . . , αn} is linearly dependent. There are a1, . . . , an ∈ R not

all zero such that
n∑

i=1
aiαi = 0. Suppose k is the largest index such that ak ̸= 0.

Clearly k ≥ 2 (since α1 ̸= 0). Thus

αk = −a−1
k

(
k−1∑
i=1

aiαi

)
=

k−1∑
i=1

(−a−1
k ai)αi.

The converse is trivial. �

7.3 Casting-out Method and Column Space

In Example 7.1.1 we used four vectors to create a span. With a relation of linear dependence in hand,

we were able to cast out two of these four vectors and create the same span from a subset of just two

vectors from the original set of four. We did have to take some care as to just which vector we casted out.

In the next example, we will be more methodical about just how we choose to eliminate vectors from a

linearly dependent set while preserving a span. This method is called the casting-out method.

Example 7.3.1: We begin with a set S containing seven vectors from R4,

S =




1

2

0

−1

 ,


4

8

0

−4

 ,


0

−1

2

2

 ,


−1

3

−3

4

 ,


0

9

−4

8

 ,


7

−13

12

−31

 ,


−9

7

−8

37




and define W = ⟨S⟩.
The set S is obviously linearly dependent, since we have n = 7 vectors from R4. So we can slim down

S some, and still create W as the span of a smaller set of vectors.

As a device for identifying linear relations among the vectors of S, we place the seven column vectors

of S into a matrix as columns,

A =


1 4 0 −1 0 7 −9

2 8 −1 3 9 −13 7

0 0 2 −3 −4 12 −8

−1 −4 2 4 8 −31 37


A nontrivial solution to Ax = 0 will give us a nontrivial linear relation on the columns of A (which are

the elements of the set S). The rref of A is the matrix

H =


1O 4 0 0 2 1 −3

0 0 1O 0 1 −3 5

0 0 0 1O 2 −6 6

0 0 0 0 0 0 0


So we can easily create solutions to the homogeneous system Ax = 0 using the free variables x2, x5, x6, x7.

Any such solution will provide a relation of linear dependence on the columns of A. These solutions
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will allow us to solve for one column vector as a linear combination of some others, in the spirit of

Theorem 7.2.10, and remove that vector from the set. We will set about forming these linear combinations

methodically.

Set the free variable x2 = 1, and set the other free variables to zero. Then a solution to Ax = 0 (also

to Hx = 0) is

α1 = (−4, 1, 0, 0, 0, 0, 0)t

which can be used to create the linear combination

(−4)A∗1 + 1A∗2 + 0A∗3 + 0A∗4 + 0A∗5 + 0A∗6 + 0A∗7 = 0.

Then A∗2 can be expressed as a linear combination of {A∗1},

A∗2 = 4A∗1.

This means that A∗2 is surplus, and we can span W just as well with a smaller set with this vector

removed,

W = ⟨A∗1, A∗3, A∗4, A∗5, A∗6, A∗7⟩ .

Now, set the free variable x5 = 1, and set the other free variables to zero. Then a solution to Hx = 0

is

α2 = (−2, 0,−1,−2, 1, 0, 0)t

which can be used to create the linear combination

(−2)A∗1 + 0A∗2 + (−1)A∗3 + (−2)A∗4 + 1A∗5 + 0A∗6 + 0A∗7 = 0.

Then A∗5 can be expressed as a linear combination of {A∗1, A∗3, A∗4},

A∗5 = 2A∗1 + 1A∗3 + 2A∗4.

This means that A∗5 is surplus, and we can span W just as well with a smaller set with this vector

removed,

W = ⟨A∗1, A∗3, A∗4, A∗6, A∗7⟩ .

Do it again, set the free variable x6 = 1, and set the other free variables to zero. Then we have

α3 = (−1, 0, 3, 6, 0, 1, 0)t

which can be used to create the linear combination

(−1)A∗1 + 0A∗2 + 3A∗3 + 6A∗4 + 0A∗5 + 1A∗6 + 0A∗7 = 0.

Then A∗6 can be expressed as a linear combination of {A∗1, A∗3, A∗4},

A∗6 = 1A∗1 + (−3)A∗3 + (−6)A∗4.

This means that A∗6 is surplus, and we can span W just as well with a smaller set with this vector

removed,

W = ⟨A∗1, A∗3, A∗4, A∗7⟩ .

Set the free variable x7 = 1, and set the other free variables to zero. We have

α4 = (3, 0,−5,−6, 0, 0, 1)t
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which can be used to create the linear combination

3A∗1 + 0A∗2 + (−5)A∗3 + (−6)A∗4 + 0A∗5 + 0A∗6 + 1A∗7 = 0

Then A∗7 can be expressed as a linear combination of {A∗1, A∗3, A∗4},

A∗7 = (−3)A∗1 + 5A∗3 + 6A∗4.

This means that A∗7 is surplus, and we can span W just as well with a smaller set with this vector

removed,

W = ⟨A∗1, A∗3, A∗4⟩ .

�

You might think we could keep this up, but we have run out of free variables. And not coincidentally,

the set {A∗1, A∗3, A∗4} is linearly independent (check this!). It should be clear how each free variable was

used to eliminate a column from the set used to span the column space, as this will be the essence of the

proof of the next theorem.

Definition 7.3.1: Let A ∈ Mm,n. A column of A corresponding the leading column of rref(A) is called

a leading column of A. The leading column index of rref(A) is also the leading column index of A.

Important: The above example shows that

1. The leading columns of A form a linearly independent set.

The leading column index of A is D = {1, 3, 4}. So {A∗1, A∗3, A∗4} is a linearly independent sets.

2. All the other columns of A are linear combinations of A∗1, A∗3, A∗4.

In fact, the relation can be written explicitly. First, obviously by H

H∗2 = 4H∗1 = 4e1

H∗5 = 2H∗1 +H∗3 + 2H∗4 = 2e1 + e2 + 2e3

H∗6 = H∗1 − 3H∗3 − 6H∗4 = e1 − 3e2 − 6e3

H∗7 = −3H∗1 + 5H∗3 + 6H∗4 = −3e1 + 5e2 + 6e3

Correspondingly we have

A∗2 = 4A∗1

A∗5 = 2A∗1 +A∗3 + 2A∗4

A∗6 = A∗1 − 3A∗3 − 6A∗4

A∗7 = −3A∗1 + 5A∗3 + 6A∗4

Suppose A ∈ Mm,n. Let

n∑
i=1

aiA∗i be a linear combination of A∗i’s, where ai ∈ R. Let P be any

invertible matrix. Then

0m =
n∑

i=1

aiA∗i ⇐⇒ 0m = P

(
n∑

i=1

aiA∗i

)
=

n∑
i=1

ai(PA∗i). (7.1)

In particular, if P is such that PA = rref(A), then PA∗i is the i-th column of rref(A). So their linear

relation can be easily inspected.
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Definition 7.3.2: Suppose A ∈ Mm,n. The subspace spanned by the columns of A is called the column

space of A and denoted by C(A). That is, C(A) = ⟨A∗1, . . . , A∗n⟩.

Now, we restate Theorem 6.3.2 as

Theorem 7.3.3: Suppose A ∈ Mm,n and b ∈ Rm. Then b ∈ C(A) if and only if LS(A, b) is consistent.

Thus, an alternative (and popular) definition of the column space of an m× n matrix A is

C(A) = {y ∈ Rm | y = Ax for some x ∈ Rn} = {Ax | x ∈ Rn} ⊆ Rm.

Lemma 7.3.4: Let {α1, . . . , αs} and {β1, . . . , βt} be two subsets of a vector space. If each βj is a linear

combination of {α1, . . . , αs}, then ⟨β1, . . . , βt⟩ ⊆ ⟨α1, . . . , αs⟩.

Proof: Let βj =
s∑

i=1
cijαi for some cij ∈ R. For each α ∈ ⟨β1, . . . , βt⟩, α =

t∑
j=1

ajβj

for some aj ∈ R. Then

α =
t∑

j=1

ajβj =
t∑

j=1

aj

(
s∑

i=1

cijαi

)
=

s∑
i=1

 t∑
j=1

ajcij

αi ∈ ⟨α1, . . . , αs⟩ .

Hence ⟨β1, . . . , βt⟩ ⊆ ⟨α1, . . . , αs⟩. �

Theorem 7.3.5: Suppose A =
[
α1 · · · αn

]
∈ Mm,n. Let H = rref(A) with D = {d1, . . . , dr} the set

of indices for the leading columns of H (also of A). Then

1. T = {αd1 , . . . , αdr} is a linearly independent set.

2. C(A) = ⟨T ⟩.

Proof: Note that H∗dj = ej ∈ Rm, 1 ≤ j ≤ r.

Suppose
r∑

j=1
ajαdj = 0. By (7.1), we have

r∑
j=1

ajH∗dj =
r∑

j=1
ajej = 0. Since

{e1, . . . , er} is linearly independent, aj = 0 for all j. Hence αd1, . . . , αdr are linearly

independent.

The second conclusion of the theorem is an equality of sets. Since any linear

combination of vectors of T is a linear combination of columns of A. So ⟨T ⟩ ⊆
C(A). It remains to prove that C(A) ⊆ ⟨T ⟩.

Denote the indices of non-leading columns of H by F = {f1, . . . , fn−r}. It is

easy to see that

H∗fk = [H]1,fke1+· · ·+[H]r,fker = [H]1,fkH∗d1+· · ·+[H]r,fkH∗dr =
r∑

j=1

[H]j,fjH∗dj , for each k.

By (7.1),

αfk = A∗fk = [H]1,fkA∗d1+· · ·+[H]r,fkA∗dr =
r∑

j=1

[H]j,fjA∗dj =
r∑

j=1

[H]j,fjαdj , for each k.
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Now we take an arbitrary element β ∈ C(A), β is a linear combination of α1, . . . , αn.
Since each αfk is a linear combination of elements in T , by Lemma 7.3.4, β ∈ ⟨T ⟩.
Thus, C(A) ⊆ ⟨T ⟩. �

Example 7.3.2: Let S = {α1 = (1, 0,−1, 1)t, α2 = (0, 1, 2,−1)t, α3 = (1, 1, 1, 0)t, α4 = (−1, 1, 1, 2)t,

α5 = (−2, 3, 2, 7)t}. Find a maximal linearly independent subset of S (i.e., the largest and linearly

independent subset of S).

Solution: Let A =
(
α1 α2 α3 α4 α5

)
=


1 0 1 −1 −2

0 1 1 1 3

−1 2 1 1 2

1 −1 0 2 7

.

We have H = rref(A) =


1 0 1 0 1

0 1 1 0 0

0 0 0 1 3

0 0 0 0 0

. Thus {α1, α2, α4} is a maximal lin-

early independent subset of S. By Theorem 7.3.5 we have C(A) = ⟨α1, α2, α4⟩.
Moreover, since H∗3 = H∗1 +H∗2 and H∗5 = H∗1 + 3H∗4, we have α3 = α1 + α2

and α5 = α1 + 3α4. �

Since the rref of a matrix is unique, the procedure of Theorem 7.3.5 leads us to a unique set T .

However, there is a wide variety of possibilities for sets T that are linearly independent and which can be

employed in a span to span C(A). Without proof, we list two other possibilities for the above example:

T ′ = {α1, α3, α4} and T ∗ = {α2, α3, α5}.
Can you prove that T ′ and T ∗ are linearly independent sets and C(A) = ⟨T ′⟩ = ⟨T ∗⟩?
These are maximal linear independent subsets of S too.

Example 7.3.3: Let

A =


1 2 7 1 −1

1 1 3 1 0

3 2 5 −1 9

1 −1 −5 2 0

 .

Find C(A) as a null space of a linear system or a null space of some matrix.

Solution: Let us determine whether α = (v1, v2, v3, v4)
t ∈ C(A).

Applying Gauss-Jordan elimination to the augmented matrix, we have
1 2 7 1 −1 v1
1 1 3 1 0 v2
3 2 5 −1 9 v3
1 −1 −5 2 0 v4

 ,

we obtain 
1 0 −1 0 3 −3v1 + 5v2 − v4
0 1 4 0 −1 v1 − v2
0 0 0 1 −2 2v1 − 3v2 + v4
0 0 0 0 0 9v1 − 16v2 + v3 + 4v4
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When 9v1 − 16v2 + v3 + 4v4 = 0, α ∈ C(A).
If 9v1 − 16v2 + v3 + 4v4 ̸= 0, the equation corresponding to the last row is

9v1 − 16v2 + v3 + 4v4 = 0.

So the corresponding system of linear equations is inconsistent. Hence α ̸∈ C(A).

Hence α ∈ C(A) if and only if 9v1 − 16v2 + v3 + 4v4 = 0. Therefore

C(A) = N (
[
9 −16 1 4

]
).

�

Example 7.3.4: Let

A =


1 4 0 −1 0 7 −9

2 8 −1 3 9 −13 7

0 0 2 −3 −4 12 −8

−1 −4 2 4 8 −31 37

 .

Find a minimal subset of the set of columns of A that spans C(A) (this is called a minimal spanning set

of C(A), or a basis of C(A) later).

Solution: This is the same matrix in Example 7.3.1.

A
rref−−→


1O 4 0 0 2 1 −3

0 0 1O 0 1 −3 5

0 0 0 1O 2 −6 6

0 0 0 0 0 0 0

 .

The indices of the leading columns are D = {1, 3, 4}. By Theorem 7.3.5, C(A) =
⟨A∗1, A∗3, A∗4⟩.

Moreover, we can also see that

A∗2 = 4A∗1

A∗5 = 2A∗1 + 1A∗3 + 2A∗4

A∗6 = 1A∗1 − 3A∗3 − 6A∗4

A∗7 = −3A∗1 + 5A∗3 + 6A∗4

�

Restate the last statement of Theorem 7.2.8 we have

Theorem 7.3.6: Suppose A ∈ Mn. A is nonsingular if and only if C(A) = Rn.

7.4 Row Space
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Definition 7.4.1: Suppose A ∈ Mm,n. The row space of A, R(A), is the column space of At, i.e.,

R(A) = C(At).

Informally, the row space is the set of all linear combinations of the rows of A. However, we write

the rows as column vectors, thus the necessity of using the transpose to make the rows into columns.

Additionally, with the row space defined in terms of the column space, all of the previous results of this

chapter can be applied to row spaces.

Example 7.4.1: Find R(A) for

A =


1 4 0 −1 0 7 −9

2 8 −1 3 9 −13 7

0 0 2 −3 −4 12 −8

−1 −4 2 4 8 −31 37

 .

To build the row space, we transpose the matrix,

At =



1 2 0 −1

4 8 0 −4

0 −1 2 2

−1 3 −3 4

0 9 −4 8

7 −13 12 −31

−9 7 −8 37


Then the columns of this matrix are used in a span to build the row space,

R(A) = C(At) =

⟨


1

4

0

−1

0

7

−9


,



2

8

−1

3

9

−13

7


,



0

0

2

−3

−4

12

−8


,



−1

−4

2

4

8

−31

37



⟩
.

First, row-reduce At, 

1O 0 0 −31
7

0 1O 0 12
7

0 0 1O 13
7

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


.

Since the leading columns have indices D = {1, 2, 3}, the column space of At can be spanned by the
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first three columns of At,

R(A) = C(At) =

⟨


1

4

0

−1

0

7

−9


,



2

8

−1

3

9

−13

7


,



0

0

2

−3

−4

12

−8



⟩
.

�

Theorem 7.4.2: Suppose A and B are row-equivalent m× n matrices. Then R(A) = R(B).

Proof: Since B is row equivalent to A, there exist elementary matrices E1, . . . , Ek

such that

EkEk−1 · · ·E1A = B. It suffices to show that R(EA) = R(A) for any elemen-

tary matrix E.

Suppose E is an elementary matrix of type 1. Then

R(EA) = ⟨A1∗, . . . , bAi∗, . . . , Am∗⟩ ,

for some b ̸= 0. By Lemma 7.3.4, R(EA) ⊆ R(A).

Conversely, since Ai∗ = b−1(bAi∗). So R(A) ⊆ R(EA). Therefore, R(EA) =

R(A).

Suppose E is an elementary matrix of type 2. Then

R(EA) = ⟨A1∗, . . . , Ai∗, . . . , bAi∗ + Aj∗, . . . , Am∗⟩ ,

for some b ̸= 0 and i ̸= j. By Lemma 7.3.4, R(EA) ⊆ R(A).

Conversely, since Aj∗ = (−b)Ai∗ + (bAi∗ +Aj∗), by Lemma 7.3.4 again R(A) ⊆
R(EA). Therefore, R(EA) = R(A).

Suppose E is an elementary matrix of type 3. Then the set of rows of A does

not change. So R(EA) = R(A). �

Theorem 7.4.3: Suppose that A is a matrix and H = rref(A). Let S be the set of nonzero columns of

Ht. Then

1. R(A) = ⟨S⟩.

2. S is a linearly independent set.

Proof: From Theorem 7.4.2 and definition, we have C(At) = R(A) = R(H) =

C(H t). If H has any zero rows, these are zero columns of H t. Since zero vector

always a linear combination of any nonzero vectors where all the scalars are zero.

So, by Lemma 7.3.4 we have C(H t) = ⟨S⟩. Hence R(A) = ⟨S⟩.
Suppose H has r nonzero rows and let D = {d1, . . . , dr} denote the indices of

the leading columns of H. Denote the r column vectors of H t as H1, . . . , Hr, i.e.,
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S = {H1, . . . , Hr}. To show that S is linearly independent, start with a linear

relation

a1H1 + · · ·+ arHr =
r∑

k=1

akHk = 0.

Now consider this vector equality in location di. Since H is in rref, the column

di of H is ei. So, the entries of column di of H are all zero, except for a leading 1

in row i, i.e., [Hk]di = [H t]di,k = δi,k. Thus, in H t, row di is all zeros, excepting a

1 in column i. So, for 1 ≤ i ≤ r,

0 = [0]di =

[
r∑

k=1

akHk

]
di

=
r∑

k=1

[akHk]di =
r∑

k=1

ak[Hk]di =
r∑

k=1

akδi,k = ai.

Hence H1, . . . , Hr are linearly independent. �

Example 7.4.2: Let X =
⟨
(1, 2, 1, 6, 6)t, (3,−1, 2,−1, 6)t, (1,−1, 0,−1,−2)t, (−3, 2,−3, 6,−10)t

⟩
.

Let A be the matrix whose rows are the vectors in X, so by design X = R(A). Now

A =


1 2 1 6 6

3 −1 2 −1 6

1 −1 0 −1 −2

−3 2 −3 6 −10

 .

We get

H = rref(A) =


1O 0 0 2 −1

0 1O 0 3 1

0 0 1O −2 5

0 0 0 0 0

 .

Then the above theorem says that we can grab the nonzero columns of Ht and write

X = R(A) = R(H) =
⟨
(1, 0, 0, 2,−1)t, (0, 1, 0, 3, 1)t, (0, 0, 1,−2, 5)t

⟩
.

Note that, the vectors in the spanning set of X here are not come form the original vectors. �

Theorem 7.4.4: Suppose A is a matrix. Then C(A) = R(At).

Proof: C(A) = C((At)t) = R(At). �

Example 7.4.3: Find a spanning set of the column space of A in Example 7.4.1. Here

A =


1 4 0 −1 0 7 −9

2 8 −1 3 9 −13 7

0 0 2 −3 −4 12 −8

−1 −4 2 4 8 −31 37

 .

Method 1.

A
rref−−−→


1O 4 0 0 2 1 −3

0 0 1O 0 1 −3 5

0 0 0 1O 2 −6 6

0 0 0 0 0 0 0
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By Theorem 7.3.5

C(A) =
⟨
(1, 2, 0,−1)t, (0,−1, 2, 2)t, (−1, 3,−3, 4)t

⟩
.

Method 2. The transpose of A is

At =



1 2 0 −1

4 8 0 −4

0 −1 2 2

−1 3 −3 4

0 9 −4 8

7 −13 12 −31

−9 7 −8 37


.

We have

H = rref(At) =



1O 0 0 −31
7

0 1O 0 12
7

0 0 1O 13
7

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


.

Hence

C(A)
Theorem 7.4.4
========== R(At)

Theorem 7.4.2
========== R(H)

Definition
======== C(Ht) =

⟨
1

0

0

−31
7

 ,


0

1

0
12
7

 ,


0

0

1
13
7


⟩
.

�

This is a very nice description of the column space. Fewer vectors than the 7 involved in the definition,

and the pattern of the zeros and ones in the first 3 slots can be used to advantage. For example, let us

check if

β = (3, 9, 1, 4)t

is in C(A) or not. If it is, then

β =


3

9

1

4

 = x


1

0

0

−31
7

+ y


0

1

0
12
7

+ z


0

0

1
13
7

 =


x

y

z

−31
7 x+ 12

7 y +
13
7 z

 ,

for some x, y, z ∈ R.
From the first three coordinate, we have x = 3, y = 9, z = 1. Let us check the last coordinate:

−31

7
× 3 +

12

7
× 9 +

13

7
× 1 = 4.

Hence β ∈ C(A).

Remark 7.4.5: Both methods describe algorithms to find bases for the column space (i.e., linear

independent sets generate the column space which will be introduced in next chapter). Here are the

differences.
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1. In Method 1, we find a subset of columns that form a basis. However in Method 2, the basis is not

a subset of columns.

2. Given a vector β ∈ C(A), it is easier to express it as a linear combination of the basis given by

Method 2.
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