
Chapter 5: Invertible Matrices

5.1 Inverse of a Matrix

Example 5.1.1: Consider the system

−7x1 − 6x2 − 12x3 = −33,

5x1 + 5x2 + 7x3 = 24,

x1 + 4x3 = 5.

We can represent this system of equations as

Ax = b,

where

A =

 −7 −6 −12

5 5 7

1 0 4

 , x =

x1x2
x3

 , b =

−33

24

5

 .

Now, entirely unmotivated, we define a 3× 3 matrix B, −10 −12 −9

13/2 8 11/2

5/2 3 5/2


and note the remarkable fact that

BA =

1 0 0

0 1 0

0 0 1

 .

Now apply this computation to the problem of solving the system of equations,

x = I3x = (BA)x = B(Ax) = Bb.

So we have

x = Bb =

−3

5

2

 .

So with the help and assistance of B we have been able to determine a solution to the system rep-

resented by Ax = b through judicious use of matrix multiplication. Since the coefficient matrix in this

example is nonsingular, there would be a unique solution, no matter what the choice of b. The derivation

above amplifies this result, since we were forced to conclude that x = Bb and the solution could not be

anything else. You should notice that this argument would hold for any particular choice of b. �

The matrix B of the previous example is called the inverse of A. When A and B are combined via

matrix multiplication, the result is the identity matrix, which can be inserted in front of x as the first

step in finding the solution.

This is entirely analogous to how we might solve a single linear equation with one unknown like

3x = 12.

x = 1x =

(
1

3
(3)

)
x =

1

3
(3x) =

1

3
(12) = 4.
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Here we have obtained a solution by employing the multiplicative inverse of 3, 3−1 = 1
3 . This works

fine for any scalar multiple of x, except for zero, since zero does not have a multiplicative inverse. Consider

separately the two linear equations,

0x = 12; 0x = 0.

The first has no solutions, while the second has infinitely many solutions. For matrices, it is all just

a little more complicated. Some matrices have inverses, some do not.

And when a matrix does have an inverse, just how would we compute it? In other words, just where

did that matrix B in the last example come from? Are there other matrices that might have worked just

as well?

Definition 5.1.1: Suppose A and B are square matrices of order n such that AB = In and BA = In.

Then A is invertible and B is the inverse of A. Here, we use ‘the’ not ‘an’, since we shall show that inverse

of a matrix is unique if it exists. In this situation, we write B = A−1.

Notice that if B is the inverse of A, then we can just as easily say A is the inverse of B, or A and B

are inverses of each other.

From Remark 2.5.9 we considered two matrices: A =

[
1 0

0 0

]
and B =

[
0 1

0 0

]
. We got

AB =

[
0 1

0 0

]
and BA =

[
0 0

0 0

]
.

Suppose A has the inverse, say C. Then AC = I2. Hence B = BI2 = BAC = O2C = O2 which yields

a contradiction.

So, NOT every square matrix has an inverse.

Example 5.1.2: Consider the matrices

A =

(
1 2

2 3

)
and B =

(
−3 2

2 −1

)
.

It is easy to see that AB = BA = I2. So B is the inverse of A. �

Example 5.1.3: Consider the matrices

A =


1 2 1 2 1

−2 −3 0 −5 −1

1 1 0 2 1

−2 −3 −1 −3 −2

−1 −3 −1 −3 1

 and B =


−3 3 6 −1 −2

0 −2 −5 −1 1

1 2 4 1 −1

1 0 1 1 0

1 −1 −2 0 1

 .

Then

AB =


1 2 1 2 1

−2 −3 0 −5 −1

1 1 0 2 1

−2 −3 −1 −3 −2

−1 −3 −1 −3 1




−3 3 6 −1 −2

0 −2 −5 −1 1

1 2 4 1 −1

1 0 1 1 0

1 −1 −2 0 1

 =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1
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and

BA =


−3 3 6 −1 −2

0 −2 −5 −1 1

1 2 4 1 −1

1 0 1 1 0

1 −1 −2 0 1




1 2 1 2 1

−2 −3 0 −5 −1

1 1 0 2 1

−2 −3 −1 −3 −2

−1 −3 −1 −3 1

 =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 .

So by the definition of inverse matrix, we can say that A is invertible and write B = A−1. �

We will now concern ourselves less with whether or not an inverse of a matrix exists, but instead with

how you can find one when it does exist. Later we will have some theorems that allow us to more quickly

and easily determine just when a matrix is invertible.

5.2 Computing the Inverse of a Matrix

Theorem 5.2.1: Suppose A =

[
a b

c d

]
. Then A is invertible if and only if ad − bc ̸= 0. When A is

invertible,

A−1 =
1

ad− bc

[
d −b

−c a

]
.

Proof: [⇐] Assume that ad− bc ̸= 0. Let B =
1

ad− bc

[
d −b

−c a

]
.

AB =

[
a b

c d

](
1

ad− bc

[
d −b

−c a

])
=

1

ad− bc

[
ad− bc 0

0 ad− bc

]
=

[
1 0

0 1

]

and

BA =
1

ad− bc

[
d −b

−c a

][
a b

c d

]
=

1

ad− bc

[
ad− bc 0

0 ad− bc

]
=

[
1 0

0 1

]
.

We get that A−1 = B.

[⇒] Suppose A is invertible, i.e., A−1 exists. Also, A ̸= O2.

Let C =

[
d −b

−c a

]
. Clearly C ̸= O2. It is easy to see thatAC =

[
ad− bc 0

0 ad− bc

]
=

(ad− bc)I2.
Thus C = I2C = A−1AC = A−1[(ad− bc)I2] = (ad− bc)A−1I2 = (ad− bc)A−1.

Since C ̸= O2, ad− bc ̸= 0. �

Example 5.2.1: Consider the matrix in Example 5.1.3

A =


1 2 1 2 1

−2 −3 0 −5 −1

1 1 0 2 1

−2 −3 −1 −3 −2

−1 −3 −1 −3 1

 .
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Suppose there is a matrix B such that AB = I5. Then we have

A (B∗1|B∗2|B∗3|B∗4|B∗5) = (e1|e2|e3|e4|e5)

(AB∗1|AB∗2|AB∗3|AB∗4|AB∗5) = (e1|e2|e3|e4|e5)

Equating the matrices column-by-column we have

AB∗1 = e1, AB∗2 = e2, AB∗3 = e3, AB∗4 = e4, AB∗5 = e5.

Since the matrix B is what we are trying to compute, we can view each column, B∗i, as a column

vector of unknowns. Then we have five systems of equations to solve, each with 5 equations in 5 unknowns.

Notice that all 5 of these systems have the same coefficient matrix. We will now solve each system.

Row-reduce the augmented matrix of the linear system AB∗1 = e1
1 2 1 2 1 1

−2 −3 0 −5 −1 0

1 1 0 2 1 0

−2 −3 −1 −3 −2 0

−1 −3 −1 −3 1 0


rref−−−→


1O 0 0 0 0 −3

0 1O 0 0 0 0

0 0 1O 0 0 1

0 0 0 1O 0 1

0 0 0 0 1O 1

 ; we get B∗1 =


−3

0

1

1

1

.
Row-reduce the augmented matrix of the linear system AB∗2 = e2

1 2 1 2 1 0

−2 −3 0 −5 −1 1

1 1 0 2 1 0

−2 −3 −1 −3 −2 0

−1 −3 −1 −3 1 0


rref−−−→


1O 0 0 0 0 3

0 1O 0 0 0 −2

0 0 1O 0 0 2

0 0 0 1O 0 0

0 0 0 0 1O −1

 ; we get B∗2 =


3

−2

2

0

−1

.
Row-reduce the augmented matrix of the linear system AB∗3 = e3

1 2 1 2 1 0

−2 −3 0 −5 −1 0

1 1 0 2 1 1

−2 −3 −1 −3 −2 0

−1 −3 −1 −3 1 0


rref−−−→


1O 0 0 0 0 6

0 1O 0 0 0 −5

0 0 1O 0 0 4

0 0 0 1O 0 1

0 0 0 0 1O −2

 ; we get B∗3 =


6

−5

4

1

−2

.
Row-reduce the augmented matrix of the linear system AB∗4 = e4

1 2 1 2 1 0

−2 −3 0 −5 −1 0

1 1 0 2 1 0

−2 −3 −1 −3 −2 1

−1 −3 −1 −3 1 0


rref−−−→


1O 0 0 0 0 −1

0 1O 0 0 0 −1

0 0 1O 0 0 1

0 0 0 1O 0 1

0 0 0 0 1O 0

 ; we get B∗4 =


−1

−1

1

1

0

.
Row-reduce the augmented matrix of the linear system AB∗5 = e5

1 2 1 2 1 0

−2 −3 0 −5 −1 0

1 1 0 2 1 0

−2 −3 −1 −3 −2 0

−1 −3 −1 −3 1 1


rref−−−→


1O 0 0 0 0 −2

0 1O 0 0 0 1

0 0 1O 0 0 −1

0 0 0 1O 0 0

0 0 0 0 1O 1

 ; we get B∗5 =


−2

1

−1

0

1

.
By this method, we know that AB = I5. We have checked in Example 5.1.3 that BA = I5. So

B = A−1. �

We see that we follows the exact same row operations for each case. We can combine all five cases

into one.

(A|e1|e2|e3|e4|e5) = (A|I5)
rref−−−→ (I5|B).
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Example 5.2.2: Find the inverse of the matrix

A =

 −7 −6 −12

5 5 7

1 0 4

 ,

which is shown in Example 5.1.1.

Form the augmented matrix

(A|I3) =

 −7 −6 −12 1 0 0

5 5 7 0 1 0

1 0 4 0 0 1

 R1↔R3−−−−→

 1 0 4 0 0 1

5 5 7 0 1 0

−7 −6 −12 1 0 0


−5R1+R2−−−−−→
7R1+R3

 1 0 4 0 0 1

0 5 −13 0 1 −5

0 −6 16 1 0 7

 R3+R2−−−−→

 1 0 4 0 0 1

0 −1 3 1 1 2

0 −6 16 1 0 7


−R2−−→

 1 0 4 0 0 1

0 1 −3 −1 −1 −2

0 −6 16 1 0 7

 6R2+R3−−−−−→

 1 0 4 0 0 1

0 1 −3 −1 −1 −2

0 0 −2 −5 −6 −5


− 1

2R3−−−→

 1 0 4 0 0 1

0 1 −3 −1 −1 −2

0 0 1 5/2 3 5/2

 3R3+R2−−−−−→
−4R3+R1

 1 0 0 −10 −12 −9

0 1 0 13/2 8 11/2

0 0 1 5/2 3 5/2


So, A−1 =

 −10 −12 −9

13/2 8 11/2

5/2 3 5/2

. �

Theorem 5.2.2: Suppose A is a nonsingular square matrix of order n. Create the n × 2n matrix

M = (A|In). Let N be a matrix that is row-equivalent to M and in rref. Finally, let P be the matrix

formed from the last n columns of N in order. Then AP = In = PA. In other word, P = A−1.

Proof: A is nonsingular, there is a sequence of row operations that will convert

A into In (Theorem 4.3.2). By Corollary 3.1.4, there is a matrix Q, which is a

product of elementary matrices, such that QA = In. Using the same sequence of

row operations will convert M into N , since having the identity matrix in the first

n columns of N is sufficient to guarantee that N is in rref. Thus QM = N , i.e.,

N = Q(A|In) = (In|Q). In other word, P = Q. Thus we have PA = In.

If we consider the systems of linear equations, Ax = ei, 1 ≤ i ≤ n, we see

that the aforementioned sequence of row operations will also bring the augmented

matrix (A|ei) of each of these systems into reduced row-echelon form. Further-

more, the unique solution to Ax = ei appears in column n+1 of the row-reduced

augmented matrix of (A|ei) and is identical to column n+ i of N . So we find,

AP =A(P∗1|P∗2| · · · |P∗n) = (AP∗1|AP∗2| · · · |AP∗n)

=(e1|e2| · · · |en) = In
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as desired. �

5.3 Properties of Matrix Inverses

Theorem 5.3.1: Suppose the square matrix A has an inverse B. Then it is unique.

Proof: Assume that C is also an inverse of A.

Then BA = I and AC = I. Then we have,

B = BI = B(AC)

= (BA)C = IC

= C

So we conclude that B and C are the same. So any matrix that acts like an
inverse, must be the inverse. �

Theorem 5.3.2: Suppose A and B are invertible. Then

1. AB is invertible. Moreover, (AB)−1 = B−1A−1.

2. A−1 is invertible and (A−1)−1 = A.

3. At is invertible and (At)−1 = (A−1)t.

4. Suppose c ̸= 0. cA is invertible and (cA)−1 = c−1A−1.

Proof: Suppose A,B ∈ Mn.

1. (B−1A−1)(AB) = B−1(A−1A)B = B−1InB = B−1B = In. Similarly, we have

(AB)(B−1A−1) = In. By uniqueness, B−1A−1 = (AB)−1.

2. Since AA−1 = In = A−1A, by uniqueness, (A−1)−1 = A.

3. (A−1)tAt = (AA−1)t = I tn = In. Similarly we have At(A−1)t = In. By unique-

ness, (A−1)t = (At)−1.

4. (c−1A−1)(cA) = c−1cA−1A = 1In = In. Similarly, we have (cA)(c−1A−1) = In.

So, (cA)−1 = c−1A−1.

�
Notice that there are some likely theorems that are missing here. For example, it would be tempting

to think that (A+B)−1 = A−1 +B−1, but this is false. Can you find a counterexample?

Theorem 5.3.3: Suppose that A,B ∈ Mn. The product AB is nonsingular if and only if A and B are

both nonsingular.

Proof: [⇒] For this portion of the proof we will form the logically-equivalent contrapositive and prove

that statement using two cases.

AB is nonsingular implies A and B are both nonsingular becomes A or B is singular implies AB is

singular.
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Case 1. Suppose B is singular. Then there is a nonzero vector z that is a solution

to the system Bx = 0. So

(AB)z = A(Bz) = A0 = 0.

Then z is a nonzero solution to the system (AB)x = 0. Thus AB is

singular as desired.

Case 2. Suppose A is singular, and B is not singular.

Since A is singular, there is a nonzero vector b that is a solution to Ax = 0.

Now consider the linear system Bx = b. Since B is nonsingular, the

system has a unique solution, say w. Since b ̸= 0, w ̸= 0.

Now,

(AB)w = ABw = Ab = 0.

So w is a nonzero solution to (AB)x = 0. Thus AB is singular as desired.

And this conclusion holds for both cases.

[⇐] Now assume that both A and B are nonsingular. Suppose that z ∈ Rn is a

solution to (AB)x = 0. Then

0 = (AB)z = A(Bz).

So Bz is a solution to Ax = 0. By the definition of a nonsingular matrix, we

conclude that Bz = 0.
Now, by an entirely similar argument, the nonsingularity of B forces us to

conclude that z = 0. So the only solution to (AB)x = 0 is the zero vector and
we conclude that AB is nonsingular. �

Theorem 5.3.4: Suppose A and B are square matrices of order n such that AB = In. Then BA = In.

Proof: The matrix In is nonsingular. By Theorem 5.3.3, A and B are nonsingular.

By Theorem 5.2.2, there is a matrix C so that BC = In. Note that, C is called a

right-inverse of B.
By the proof of Theorem 5.3.1, we have A = C, i.e., AB = In = BA. �
The above theorem tells us that if A is nonsingular, then the matrix B guaranteed by Theorem 5.2.2

will be both a right-inverse and a left-inverse for A. So A is invertible and A−1 = B.

So if you have a nonsingular matrix A, you can use the procedure described in Theorem 5.2.2 to find

an inverse for A. If A is singular, then the procedure in Theorem 5.2.2 will fail as the first n columns of

M will not row-reduce to the identity matrix. However, we can say a bit more. When A is singular, then

A does not have an inverse (which is very different from saying that the procedure in Theorem 5.2.2 fails

to find an inverse). This may feel like we are splitting hairs, but it is important that we do not make

unfounded assumptions. These observations motivate the next theorem.

Theorem 5.3.5: Suppose that A ∈ Mn. Then A is nonsingular if and only if A is invertible.
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Proof: [⇐] Since A is invertible, we can write In = AA−1. Since In is nonsingular,

Theorem 5.3.3 implies that A (and A−1) is nonsingular.

[⇒] Suppose A is nonsingular. By Theorem 5.2.2 we find B so that AB = In.

Then Theorem 5.3.4 tells us that BA = In. So B is the inverse of A and hence A

is invertible. �
So for a square matrix, the properties of having an inverse and of having a trivial null space are one

and the same. Update the Theorem 4.3.5 we have

Theorem 5.3.6: Suppose that A ∈ Mn. The following are equivalent.

1. A is nonsingular.

2. A is row equivalent to In.

3. N (A) = {0n}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. A is invertible.

Theorem 5.3.7: Suppose that A is nonsingular. Then the unique solution to Ax = b is A−1b.

Proof: A is nonsingular implies the system Ax = b has unique solution. It is easy to check that A−1b

is a solution. �

5.4 Elementary Matrices

Recall that

1 An elementary matrix of type 1 is (bRi)(I) = I + (b− 1)Ei,i for b ̸= 0

2 An elementary matrix of type 2 is (bRi +Rj)(I) = I + bEj,i for i ̸= j and b ̸= 0 having the form

3 An elementary matrix of type 3 is (Ri ↔ Rj)(I) = I − Ei,i − Ej,j + Ei,j + Ej,i for i ̸= j

Here Ei,j ∈ Mm(R) whose (i, j)-entry is 1 and others are zero, where m fixed, i.e., [Ei,j ]h,k = δhiδkj .

Corollary 3.1.4: Suppose A ∈ Mm,n. After performing s elementary row operations we obtain B. There

are s elementary matrices E1, . . . , Es such that

B = Es · · ·E1A = PA,

here P = Es · · ·E1, a product of elementary matrices.

We shall show that the matrix P is invertible. In order to show this result, we have to induce a useful

formula about matrices Ei,j .

Lemma 5.4.1: For any integers i, j, h, k, Ei,jEh,k = δjhE
i,k.

Proof: Suppose the matrices are of order m. Then

[Ei,jEh,k]x,y =
m∑
z=1

[Ei,j ]x,z[E
h,k]z,y =

m∑
z=1

δxiδzjδzhδyk

= δjhδxiδyk = δjh[E
i,k]x,y.
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Therefore, we have the lemma. �

Proposition 5.4.2: Elementary matrices are invertible and their inverses are also elementary matrices

of the same type.

Proof: Let E be an elementary matrix.

For the type 1 case, E = I + (b− 1)Ei,i for b ̸= 0. Let C = I + (b−1 − 1)Ei,i. Then

EC = [I + (b− 1)Ei,i][I + (b−1 − 1)Ei,i]

= I + (b− 1)Ei,i + (b−1 − 1)Ei,i + (b− 1)(b−1 − 1)Ei,iEi,i.

By Lemma 5.4.1, EC = I + (b + b−1 − 2)Ei,i + (2 − b − b−1)δiiE
i,i = I. By Theorem 5.3.4 we get that

C = E−1.

For the type 2 case, E = I+ bEj,i for i ̸= j and b ̸= 0. Let C = I− bEj,i. Since i ̸= j, by Lemma 5.4.1

Ej,iEj,i = O. So EC = CE = I − b2Ej,iEj,i = I.

For the type 3 case, you can check that EE = I, that is E is the inverse of E. It is left to you. �

Remark 5.4.3: Since (Ei,j)t = Ej,i, if E is an elementary matrix then so is Et.

Combining with Corollary 3.1.4, Proposition 5.4.2 and Theorem 5.3.2 we have

Theorem 5.4.4: Let A,B ∈ Mm,n. Then B is row-equivalent to A if and only if B = PA, where P is

a product of m×m elementary matrices. Moreover, such P is invertible.

5.5 Uniqueness of RREF

By the definition of reduced row echelon form, we have the following two lemmas.

Lemma 5.5.1: Suppose C =
[
A B

]
is in rref. Then A is also in rref.

Lemma 5.5.2: Suppose C =

[
A

B

]
is in rref. Then A and B are also in rref.

Theorem 5.5.3: Suppose A and B are row-equivalent and are in rref. Let A′ and B′ be the result of

removing the last k columns of A and B, respectively. Then A′ and B′ are row-equivalent and are in rref.

Proof: By Lemma 5.5.1 A′ and B′ are in rref. Write A = (A′|C) and B = (B′|D).

Since A is row-equivalent to B, there is a non-singular matrix P which is a product

of elementary matrices such that PA = B. That is,

P (A′|C) = (B′|D).

By block multiplication, we have

(PA′|PC) = (B′|D).

Hence we have PA′ = B′. By Theorem 5.4.4 A′ is row-equivalent to B′. �

Lemma 5.5.4: If (H|b) and (H|c) are in rref and are row-equivalent, then b = c.
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Proof: By Theorem 3.3.3, both Hx = b and Hx = c are either consistent or

inconsistent. Note that, by Lemma 5.5.1 H is in rref.

Suppose H contains r − 1 nonzero rows, r ≥ 1.

Suppose both of the systems are inconsistent. Then, by Theorem 3.3.3, b and

c are leading columns. Then b = c = er.
Suppose both of the systems are consistent. Let z be a solution of Hx = b.

Since a is also a solution of Hx = c. Then b = Hz = c. �

Theorem 5.5.5: If two m× n matrices A and B are in rref and are row-equivalent, then A = B.

Proof: Suppose A ̸= B. Let k be the least integer so that the k-th column of A does not agree with the

k-th column of B. Consider the submatrices(
A∗1 · · · A∗(k−1) A∗k

)
and

(
B∗1 · · · B∗(k−1) B∗k

)
.

By Theorem 5.5.3 the above matrices are in rref and are row-equivalent.

If k = 1, then A∗1 = 0m or e1. Since A∗1 is row-equivalent to B∗1, A∗1 = 0m if and only if B∗1 = 0m.

So if A∗1 = e1, then B∗1 is not a zero column. Thus it must a leading column. Hence B∗1 = e1.

If k > 1, then by Lemma 5.5.4 A∗k = B∗k.

For both cases, we have A∗k = B∗k. It is a contradiction. �

By Theorem 5.5.5 the rref of a given matrix A is unique. We use rref(A) to denote the rref of A. The

number of nonzero rows of rref(A), say r, (i.e, the number of pivots, the number of leading columns) is

called the rank of A and denoted by rank(A).

[In other section, rank of A is defined to be the dimension of the column space of A and denoted by

r(A). But they are equivalent. It will be mentioned later.]

Theorem 5.5.6: Let A ∈ Mm,n. Then rank(A) ≤ min{m,n}.

Proof: Since rank(A) is the number of nonzero rows in rref(A). Clearly r ≤ m.
Since rank(A) is the number of leading columns rref(A), r ≤ n. �
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