
Chapter 3: Gaussian Elimination

3.1 Elementary Row Operations

Definition 3.1.1: The following three operations will transform an m×n matrix into a different matrix

of the same size, and each is called an elementary row operation.

Type 1: Multiply the i-th row by a nonzero scalar b. We use “bRi” to denote this operation.

Type 2: Multiply the i-th row by b and add to the j-th row for i ̸= j. We denote this operation by the

notation “bRi +Rj”. Note that the i-th row does not change under this operation.

Type 3: Interchange the i-th and the j-th rows for i ̸= j. We use “Ri ↔ Rj” to denote this operation.

Definition 3.1.2: An elementary matrix is a matrix obtained by applying an elementary row operation

to the identity matrix. The elementary matrix is said to be of type 1, 2, or 3 according to whether the

elementary operation of type 1, 2 or 3 performed on I, respectively.

For fixed integers i, j, let Ei,j ∈ Mm(R) whose (i, j)-entry is 1 and others are zero, where m fixed, i.e.,

[Ei,j ]h,k = δhiδkj .

So an elementary matrix of type 1 is (bRi)(I) = I + (b− 1)Ei,i for b ̸= 0 having the form



1 2 i n

1 1 0 · · · · · · · · · 0

2 0 1 · · · · · · · · · 0
...

...
. . .

...
...

...

i 0 · · · · · · b · · · 0
...

...
...

...
. . .

...

n 0 · · · · · · · · · · · · 1


An elementary matrix of type 2 is (bRi +Rj)(I) = I + bEj,i for i < j and b ̸= 0 having the form



1 2 i j n

1 1 0 · · · 0 · · · 0 · · · 0

2 0 1 · · · · · · · · · · · · · · · 0
...

...
. . .

...
...

...
...

...

i 0 · · · · · · 1 · · · 0 · · · 0
...

...
...

...
. . .

...
...

...

j 0 · · · · · · b · · · 1 · · · 0
...

...
...

...
...

...
. . .

...

n 0 · · · · · · · · · · · · · · · · · · 1


An elementary matrix of type 3 is (Ri ↔ Rj)(I) = I − Ei,i − Ej,j + Ei,j + Ej,i for i < j having the
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form 

1 2 i j n

1 1 0 · · · 0 · · · 0 · · · 0

2 0 1 · · · · · · · · · · · · · · · 0
...

...
. . .

...
...

...
...

...

i 0 · · · · · · 0 · · · 1 · · · 0
...

...
...

...
. . .

...
...

...

j 0 · · · · · · 1 · · · 0 · · · 0
...

...
...

...
...

...
. . .

...

n 0 · · · · · · · · · · · · · · · · · · 1


Theorem 3.1.3: Let A ∈ Mm,n and suppose that B is obtained from A by performing an elementary

row operation. Then there is an m×m elementary matrix E such that B = EA. In fact, E is obtained

by performing the same row operation on Im. Conversely, if E is an m×m elementary matrix, then EA

is a matrix that can be obtained by performing the same elementary row operation on A.

Proof: Suppose B is obtained from A by performing an elementary row operation

of type 1, i.e., B = (bRi)(A) for some i and b ̸= 0. By definition [B]h,k ={
b[A]h,k if h = i,

[A]h,k if h ̸= i.

Let E = (bRi)(I) = I + (b− 1)Ei,i, i.e., [E]h,k =


b if h = k = i,

1 if h = k ̸= i,

0 if h ̸= k.

. Then

[EA]h,k =
m∑
t=1

[E]h,t[A]t,k = [E]h,h[A]h,k =

{
b[A]h,k if h = i,

[A]h,k if h ̸= i.

= [B]h,k.

Hence B = EA.

Suppose B is obtained from A by performing an elementary row operation of

type 2, i.e., B = (bRi +Rj)(A) for some i ̸= j and b ̸= 0. By definition

[B]h,k =

{
b[A]i,k + [A]j,k if h = j,

[A]h,k if h ̸= j.

Let E = (bRi +Rj)(I) = I + bEj,i, i ̸= j and b ̸= 0. That is,

[E]h,k =


b if h = j, k = i,

1 if h = k,

0 otherwise.

For h = j, [EA]h,k = [EA]j,k =
m∑
t=1

[E]j,t[A]t,k = [E]j,j[A]j,k + [E]j,i[A]i,k = [A]j,k +
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b[A]i,k. For h ̸= j, [EA]h,k =
m∑
t=1

[E]h,t[A]t,k = [E]h,h[A]h,k = [A]h,k. Hence B = EA.

Suppose B is obtained from A by performing an elementary row operation of

type 3, i.e., B = (Ri ↔ Rj)(A) for some i ̸= j. By definition

[B]h,k =


[A]j,k if h = i,

[A]i,k if h = j,

[A]h,k otherwise.

Let E = (Ri ↔ Rj)(I) = I − Ei,i − Ej,j + Ei,j + Ej,i.

[EA]h,k = [A− Ei,iA− Ej,jA+ Ei,jA+ Ej,iA]h,k

= [A]h,k −
m∑
t=1

[Ei,i]h,t[A]t,k −
m∑
t=1

[Ej,j]h,t[A]t,k +
m∑
t=1

[Ei,j]h,t[A]t,k

+
m∑
t=1

[Ej,i]h,t[A]t,k

= [A]h,k − δih[A]i,k − δjh[A]j,k + δih[A]j,k + δjh[A]i,k.

For h = i, [EA]i,k = [A]i,k − [A]i,k + [A]j,k = [A]j,k. For h = j, [EA]j,k =

[A]j,k − [A]j,k + [A]i,k = [A]i,k.

For h ̸= i and h ̸= j, [EA]h,k = [A]h,k. Hence B = EA.
The converse is easy to see from the equalities above. �

Corollary 3.1.4: Suppose A ∈ Mm,n. After performing s elementary row operations we obtain B. By

Theorem 3.1.3, there are s elementary matrices E1, . . . , Es such that

B = Es · · ·E1A = PA,

here P = Es · · ·E1, a product of elementary matrices.

How do we record the product of elementary matrices described in the corollary above?

We may consider a block matrix (A|Im). If we perform a sequence of elementary row operations

transferring A to B, then by the above corollary there is a matrix P such that PA = B. Hence P (A|Im) =

(B|P ).

3.2 Reduced Row Echelon Form

Terminologies:

A row consists of 0 is called a zero row. Otherwise is called a nonzero row.

The first nonzero entry of a nonzero row is called leftmost nonzero entry of a row.

Suppose the row i is nonzero. The index of the leftmost nonzero entry of this row is denoted by di.
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Example 3.2.1: The underline entry is the leftmost nonzero entry for each row.
0 1 1 0 2

0 0 0 0 1

0 0 0 1 3

0 0 0 0 0


The index of the leftmost nonzero entry of row 1 is d1 = 2.

The index of the leftmost nonzero entry of row 2 is d2 = 5.

The index of the leftmost nonzero entry of row 3 is d3 = 4.

Row 4 is a zero row. �

Example 3.2.2: The boxed entry is the leftmost nonzero entry for each row.
2 0 1 2 3 4

0 1 1 −1 0 3

0 0 0 0 1 0

0 −1 0 0 0 1


The index of the leftmost nonzero entry of row 1 is d1 = 1.

The index of the leftmost nonzero entry of row 2 is d2 = 2.

The index of the leftmost nonzero entry of row 3 is d3 = 5.

The index of the leftmost nonzero entry of row 4 is d4 = 2. �

A matrix is said to be in reduced row echelon form if it looks like ( ∗ means an arbitrary number):
1O ∗ · · · 0 ∗ · · · 0 ∗ · · ·
0 0 · · · 1O ∗ · · · 0 ∗ · · ·
0 0 · · · 0 0 · · · 1O ∗ · · ·
...

...
...

...
...

...
...

...
...


1. It looks like an inverted staircase.

2. Each new step down gives a 1O. Above it are zeros.

3. The column that has a new step is called the pivot column.

Let us make the formal definition.

Definition 3.2.1: An m×n matrix is called in reduced row echelon form (rref) if it satisfies the following

four conditions:

1. The zero rows, if any, are the last rows of the matrix.

2. The leftmost nonzero entry in a nonzero row is a 1. It is called a pivot or leading one.

3. In the di-th column, the only nonzero entry is the pivot in the i-th row.

4. Suppose there are r nonzero rows. Let the pivot appearing in the i-th row lie at (i, di)-entry, 1 ≤ i ≤ r.

Then 1 ≤ d1 < d2 < · · · < dr ≤ n.

A column containing a pivot is called leading column (or pivot column).

Suppose there are r nonzero rows. Then there are exactly r leading columns and also r pivots. Here

is a general reduced row echelon form:
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d1 di dr

0 · · · 0 1 b1,d1+1 · · · 0 b1,di+1 · · · 0 b1,dr+1 · · ·
0 · · · 0 0 ∗ · · · 0 b2,di+1 · · · 0 b2,dr+1 · · ·
...

...
...

...
...

...
...

...
...

...
...

...

0 · · · 0 0 · · · · · · 1 bi,di+1 · · · 0 bi,dr+1 · · ·
0 · · · 0 0 · · · · · · 0 ∗ · · · 0 bi+1,dr+1 · · ·
...

...
...

...
...

...
...

...
...

...
...

...

0 · · · 0 0 · · · · · · 0 · · · · · · 0 br−1,dr+1 · · ·
0 · · · 0 0 · · · · · · 0 · · · · · · 1 br,dr+1 · · ·

0 · · · 0 0 · · · · · · 0 · · · · · · 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

...

0 · · · 0 0 · · · · · · 0 · · · · · · 0 · · · 0


where ∗ is either 0 or 1. If ∗ is a pivot, then every entry in this column differing from it is zero.

Following matrices are in rref:

In, Om,n,


0 1 2 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

 ,


1 0 0 0 4

0 1 0 0 3

0 0 1 0 2

0 0 0 1 1

 ,


1 0 1 0 0

0 1 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

 .

Following matrices are not in reduced row echelon form.
0 0 0 0

1 0 0 0

0 0 1 0

0 0 0 0

 ,


1 0 1 0 1

0 1 0 0 0

0 1 1 0 0

0 0 0 0 0

 ,


1 0 1 0 1

0 0 0 1 0

0 1 1 0 0

0 0 0 0 0

 .

The set of indices of columns that are leading columns will be denoted as D = {d1, d2, . . . , dr},
while that of columns which are not leading columns will be denoted as F = {f1, f2, . . . , fn−r}, where
1 ≤ f1 < f2 < · · · < fn−r ≤ n.

Note that, the i-th leading column (i.e., the di-th column of the matrix) is ei (of length m), 1 ≤ i ≤ r.

Example 3.2.3: The 4× 6 matrix below is in reduced row echelon from
1 3 0 0 1 0

0 0 1 3 4 0

0 0 0 0 0 1

0 0 0 0 0 0

 .

Now r = 3. Columns 1, 3, 6 are leading columns, so D = {1, 3, 6}, i.e., d1 =
1, d2 = 3, d3 = 6. F = {2, 4, 5}, i.e., f1 = 2, f2 = 4, f3 = 5. �

Example 3.2.4: The following 4× 7 matrix is in rref
1 0 5 3 0 0 5

0 1 3 6 0 0 6

0 0 0 0 1 0 7

0 0 0 0 0 1 3

 .

Prepared by Prof. W.C. Shiu MATH1030 Linear Algebra I-20/21-3-5



Now r = 4. Columns 1, 2, 5, 6 are leading columns.
So D = {1, 2, 5, 6} and F = {3, 4, 7}. �

Example 3.2.5:

I3 =

1 0 0

0 1 0

0 0 1


is in rref.

Now r = 3. Columns 1, 2, 3 are leading columns.
So D = {1, 2, 3} and F = ∅ (an empty set). �

Example 3.2.6: Here is a 5× 8 matrix in rref
1O 1 0 6 0 0 −5 9

0 0 0 0 1O 0 3 −7

0 0 0 0 0 1O 7 3

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 .

This matrix has two zero rows and three nonzero rows. Note that column 2 is not

a leading column.

So r = 3. Columns 1, 5, and 6 are the leading columns.
Thus, D = {1, 5, 6} and F = {2, 3, 4, 7, 8}. �

Definition 3.2.2: Two matrices A and B are called row equivalent if there is a sequence of elementary

row operations that transforms A to B. We use A ∼ B to denote that A and B are row equivalent. It is

important to note that row operations are reversible. So A ∼ B implies B ∼ A and vice versa.

Theorem 3.2.3: Each matrix is row equivalent to a reduced row echelon matrix.

Proof: We may assume A ̸= O. The following algorithm is called Gaussian elimination. Using this

algorithm we can reduce the matrix A to an rref matrix.

Gaussian Elimination (Gauss-Jordan Method)

Step 1. If the first column of the matrix is a zero column, cross it off mentally. Continue in this fashion

until the left column of the remaining matrix has a nonzero entry or until the columns are

exhausted. For the last case, go to Step 6.

Step 2. Interchange the first row with another row, if necessary, to put a nonzero entry to the top of the

first column.

Step 3. By means of operation of type 1, make the nonzero entry found in Step 2 to be 1 (a pivot).

Step 4. By means of operations type 2 (bRi + Rj), use the first row to obtain zeros in the remaining

positions of the first column.

Step 5. Cross off the first row and the first column mentally. Begin with Step 1 applied to the submatrix

that remains.

Step 6. Beginning with the last nonzero row, add multiples of this row to the rows above (operations

type 2) such that the pivot in this row is the only nonzero entry in its column.
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Step 7. Use operations type 2 to make the pivot in the next-to-last row the only nonzero entry in its

column.

Step 8. Repeat Step 7 for each preceding row until the second row is performed. �

Example 3.2.7: Using the Gaussian elimination, find the rref of

A =


0 0 2 2 6 2 3

2 4 1 3 7 3 −1

1 2 2 3 8 2 1

1 2 −1 0 −1 2 −1

 .

Solution:

� We first work on row 1.

� Consider column 1, find a nonzero entry in the column.

� Move the nonzero entry to row 1 by swapping rows R1 ↔ Ri for some i ̸= 1 (Step 2).

� If the (1, 1)-entry is nonzero, you do not have to swap rows. But you can consider swap it with

entry = 1 or −1.

� In this example, for column 1, 2nd entry, 3rd entry and 4th entry are nonzeros, so we can use

R1 ↔ R2, R1 ↔ R3 or R1 ↔ R4.

� There is nothing wrong about R1 ↔ R2 but it is better to swap with the row with entry equal to 1

or −1.

� So we use R1 ↔ R3.

We have

A
R1↔R3−−−−−→


1O 2 2 3 8 2 1

2 4 1 3 7 3 −1

0 0 2 2 6 2 3

1 2 −1 0 −1 2 −1

 = A1

After Step 4, we have

A1
−2R1+R2−−−−−−→
−R1+R4


1O 2 2 3 8 2 1

0 0 −3 −3 −9 −1 −3

0 0 2 2 6 2 3

0 0 −3 −3 −9 0 −2

 = A3

Ignore the row 1 and column 1. No nonzero entry lies in the remaining column 2, so we move to next

column (Step 1). Now, we only need to focus on the ‘right-lower submatrix’ of A3 consider the matrix

A3 =


1O 2 2 3 8 2 1

0 0 −3 −3 −9 −1 −3

0 0 2 2 6 2 3

0 0 −3 −3 −9 0 −2
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A3

− 1
3
R2−−−−→


1O 2 2 3 8 2 1

0 0 1O 1 3 1
3 1

0 0 2 2 6 2 3

0 0 −3 −3 −9 0 −2

 −2R2+R3−−−−−−→
3R2+R4


1O 2 2 3 8 2 1

0 0 1O 1 3 1
3 1

0 0 0 0 0 4
3 1

0 0 0 0 0 1 1



R3↔R4−−−−−→


1O 2 2 3 8 2 1

0 0 1O 1 3 1
3 1

0 0 0 0 0 1 1

0 0 0 0 0 4
3 1

 − 4
3
R3+R4−−−−−−−→


1O 2 2 3 8 2 1

0 0 1O 1 3 1
3 1

0 0 0 0 0 1O 1

0 0 0 0 0 0 −1
3



−3R4−−−→


1O 2 2 3 8 2 1

0 0 1O 1 3 1
3 1

0 0 0 0 0 1O 1

0 0 0 0 0 0 1O

 = A9

Now we are ready to perform the Jordan part (Steps 6 ∼ 8).

A9

−R4+R3
−R4+R2−−−−−−→
−R4+R1


1O 2 2 3 8 2 0

0 0 1O 1 3 1
3 0

0 0 0 0 0 1O 0

0 0 0 0 0 0 1O

 − 1
3
R3+R2−−−−−−−→

−2R3+R1


1O 2 2 3 8 0 0

0 0 1O 1 3 0 0

0 0 0 0 0 1O 0

0 0 0 0 0 0 1O



−2R2+R1−−−−−−→


1O 2 0 1 2 0 0

0 0 1O 1 3 0 0

0 0 0 0 0 1O 0

0 0 0 0 0 0 1O

 = A15.

A15 is rref of A, denoted by A
rref−−−→ A15. �

Example 3.2.8: Suppose A =

 1 1 −4 1 3

2 −3 7 7 −4

0 1 −3 −1 2

 rref−−−→ H. Find a matrix P such that PA = H.

We perform Guassian elimination to the following block matrix:

 1 1 −4 1 3 1 0 0

2 −3 7 7 −4 0 1 0

0 1 −3 −1 2 0 0 1

 −2R1+R2−−−−−→


1 1 −4 1 3 1 0 0

0 −5 15 5 −10 −2 1 0

0 1 −3 −1 2 0 0 1


R2↔R3−−−−−→
5R2+R3


1 1 −4 1 3 1 0 0

0 1 −3 −1 2 0 0 1

0 0 0 0 0 −2 1 5

 −R2+R1−−−−−→


1 0 −1 2 1 1 0 −1

0 1 −3 −1 2 0 0 1

0 0 0 0 0 −2 1 5

 .

So P =

 1 0 −1

0 0 1

−2 1 5

. �

Theorem 3.2.4: Suppose A ∼ H, where H is in rref, (i.e., A
rref−−−→ H). Then H is unique.
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The proof will be provided later. By uniqueness, we use rref(A) to denote such H in the above

theorem.

Example 3.2.9: Solve the following system of linear equations over R:
x1 + x2 − 4x3 + x4 = 3

2x1 − 3x2 + 7x3 + 7x4 = −4

x2 − 3x3 − x4 = 2

We first form the augmented matrix and perform elementary row operations to the matrix: 1 1 −4 1 3

2 −3 7 7 −4

0 1 −3 −1 2


By Example 3.2.8 we have 1 1 −4 1 3

2 −3 7 7 −4

0 1 −3 −1 2

 rref−−−→

 1 0 −1 2 1

0 1 −3 −1 2

0 0 0 0 0

 .

The equivalent system is {
x1 − x3 + 2x4 = 1

x2 − 3x3 − x4 = 2
(3.1)

While this system is fairly easy to solve, it also appears to have a multitude of solutions. For example,

choose x3 = 1, x4 = 0 and see that then x1 = 2 and x2 = 5 will together form a solution. Or choose

x3 = 0, x4 = 1, and then discover that x1 = −1 and x2 = 3 lead to a solution.

Pick any values of x3 and x4, we shall obtain solutions. Because of this behavior, we say that x3 and

x4 are free or independent variables.

But why do we vary x3 and x4 and not some other variable(s)? For now, notice that the 3rd and the

4th columns of the augmented matrix is not a leading column. With this idea, we can rearrange the two

equations, solving each for the variable whose index is the same as the column index of a leading column,

i.e.,

x1 = 1 + x3 − 2x4

x2 = 2 + 3x3 + x4

The set of solution is 


1 + a− 2b

2 + 3a+ b

a

b


∣∣∣∣∣∣∣∣∣∣
a, b ∈ R

 .

Again, for saving space, we often write as

{(1 + a− 2b, 2 + 3a+ b, a, b) | a, b ∈ R}.

�

Question: Do we really find all solutions of the system? That is, is any solution not in this form?

We shall answer this question completely later after studying the structure of solution set of a linear

system.
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3.3 Type of Solution Sets

Definition 3.3.1: A system of linear equations is consistent if it has at least one solution. Otherwise,

the system is called inconsistent.

Definition 3.3.2: Suppose A is the augmented matrix of a consistent system of linear equations and H

is the row equivalent matrix in rref. Suppose j is the index of a leading column of H. Then the unknown

xj is called a lead variable (or dependent variable). An unknown that is not a lead variable is called a free

variable (or independent variable).

Back to (3.1) of Example 3.2.9, x1, x2 are lead variables, and x3, x4 are free variables.

Here, you may see that lead variables are in terms of free variables.

Theorem 3.3.3: Suppose (A|b) is the augmented matrix of a system of linear equations, LS(A, b),
with n unknowns. Suppose also that (H|c) is a row equivalent matrix in reduced row echelon form with r

nonzero rows.

� Then the system of equations is inconsistent if and only if column n+1 of (H|c) is a leading column

(i.e., the last column c).

� Equivalently, the system is consistent if and only if c is not a leading column of (H|c).

Another way of expressing the theorem is to say that the system of equations is inconsistent if and only

if the last non-zero row of (H|c) is (0, 0, . . . , 0, 1).

Proof: Note that, it is easy to see that H is also in rref.

If the c is a leading column of (H|c), then (H|c) is in the form of H ′ 0r−1

0T
n 1

Om−r,n Om−r,1


For the system of linear equations with the above augmented matrix, the r-th

equation (i.e. the last non-zero equation) is

0 = 1.

So the system of linear equations has no solution.

Conversely, if c is not a leading column, then all leading columns of (H|c) are
leading columns of H.

Let F = {f1, f2, . . . , fn−r} be the set of indices of non-leading columns of H.
For the system of equations with the above augmented matrix, we can move the
unknowns corresponding to the non-leading columns (i.e., xf1, xf2, . . . , xfn−r

) to
the right hand side of the equations and therefore solve the equations. Hence it is
consistent. Note that xf1, xf2, . . . , xfn−r

are free variables. �

Prepared by Prof. W.C. Shiu MATH1030 Linear Algebra I-20/21-3-10



Example 3.3.1: Determine if the following system of linear equation is consistent.
x1 + x2 + 2x3 + 3x4 + 2x5 + 5x6 = 1

2x1 + 2x2 + 3x3 − x4 = 1

3x1 + 3x2 + 5x3 + x4 + x5 − 2x6 = 3

x4 + x5 + 7x6 = 0

Sometimes we do not write the ‘brace’ for the system. Solution: The augmented matrix is
1 1 2 3 2 5 1

2 2 3 −1 0 0 1

3 3 5 1 1 −2 3

0 0 0 1 1 7 0


The reduced row echelon form is

1 1 0 0 5 62 0

0 0 1 0 −3 −39 0

0 0 0 1 1 7 0

0 0 0 0 0 0 1


The last column is a leading column. So the system is inconsistent. �

Example 3.3.2: Determine whether the following system of linear equation is consistent.

x1 + x2 + 2x3 + 3x4 + 2x5 + 5x6 = 1

2x1 + 2x2 + 3x3 − x4 = 1

3x1 + 3x2 + 5x3 + x4 + x5 − 2x6 = 3

x4 + x5 + 7x6 = −1

Solution: The augmented matrix is
1 1 2 3 2 5 1

2 2 3 −1 0 0 1

3 3 5 1 1 −2 3

0 0 0 1 1 7 −1


The reduced row echelon form is

1 1 0 0 5 62 −12

0 0 1 0 −3 −39 8

0 0 0 1 1 7 −1

0 0 0 0 0 0 0


The last column is not a leading column. So the system is consistent. �

Theorem 3.3.4: Suppose (A|b) is the augmented matrix of a consistent system of linear equations,

LS(A, b), with n unknowns. Suppose also that (H|c) = rref(A|b) with r pivots. Then r ≤ n. If r = n,

then the system has a unique solution; and if r < n, then the system has infinitely many solutions.
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Proof: Note that (H|c) has n+1 columns. (H|c) with r pivots implies that there are r leading columns.

Since the system is consistent, Theorem 3.3.3 tells us that c is not a leading

column. Thus, r ≤ n.

When r = n, we find n−r = 0 free variables (i.e., F = ∅) and the only solution

is given by setting the n unknowns to the first n entries c.

When r < n, we have n − r > 0 free variables. Choose one free variable and

set all the other free variables to zero.
Now, set the chosen free variable to any fixed value. It is possible to determine

the values of the lead variables to create a solution. By setting the chosen free
variable to different values, in this manner we can create infinitely many solutions.

�

3.4 Free variables

The next theorem simply states a conclusion from the final paragraph of the proof of Theorem 3.3.3,

allowing us to state explicitly the number of free variables for a consistent system.

Theorem 3.4.1: Suppose (A|b) is the augmented matrix of a consistent system of linear equations with

n unknowns. Suppose also that (H|c) = rref(A|b) with r pivots. Then the solution set can be described

with n− r free variables.

Example 3.4.1:

1. System of linear equations with n = 3, m = 3.

x1 − x2 + 2x3 = 1

2x1 + x2 + x3 = 8

x1 + x2 = 5

Augmented matrix  1 −1 2 1

2 1 1 8

1 1 0 5


The reduced row echelon form of the augmented matrix 1O 0 1 3

0 1O −1 2

0 0 0 0


The last column is not a leading column. So the system of linear equations is consistent.

r = 2, there is 3− 2 = 1 free variable.

In fact D = {1, 2}, F = {3}. x1, x2 are lead variables, x3 is a free variable.

x1 = 3− x3

x2 = 2 + x3

�
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2. System of linear equations with n = 3,m = 3.

−7x1 − 6x2 − 12x3 = −33

5x1 + 5x2 + 7x3 = 24

x1 + 4x3 = 5

Augmented matrix  −7 −6 −12 −33

5 5 7 24

1 0 4 5


The reduced row echelon form of the augmented matrix. 1O 0 0 −3

0 1O 0 5

0 0 1O 2


The last column is not a leading column. So the system of linear equations is

consistent.

r = 3, there are 3− 3 = 0 free variables. So the solution is unique.

In fact, x1 = −3, x2 = 5, x3 = 2. �
3. System of linear equations with n = 2, m = 5.

2x1 + 3x2 = 6

−x1 + 4x2 = −14

3x1 + 10x2 = −2

3x1 − x2 = 20

6x1 + 9x2 = 18

Augmented matrix 
2 3 6

−1 4 −14

3 10 −2

3 −1 20

6 9 18


The reduced row echelon form of the augmented matrix.

1O 0 6

0 1O −2

0 0 0

0 0 0

0 0 0

 .

The last column is not a leading column. So the system of linear equations is
consistent.
r = 3, there are 2− 2 = 0 free variables. So the solution is unique.
In fact x1 = 6, x2 = −2. �
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4. System of linear equations with n = 4,m = 3.

2x1 + x2 + 7x3 − 7x4 = 2

−3x1 + 4x2 − 5x3 − 6x4 = 3

x1 + x2 + 4x3 − 5x4 = 2

Augmented matrix  2 1 7 −7 2

−3 4 −5 −6 3

1 1 4 −5 2


The reduced row echelon form of the augmented matrix. 1O 0 3 −2 0

0 1O 1 −3 0

0 0 0 0 1O


The last column is a leading column. Hence the system of linear equations is
inconsistent. It has no solution. �

Theorem 3.4.2: A system of linear equations has no solutions, a unique solution or infinitely many

solutions.

Proof: If the system is inconsistent, that it has no solutions.

Suppose the system is consistent. If it has 0 free variable, then it has a unique

solution. If it has at least 1 free variables, then it has infinite many solutions.

�

Theorem 3.4.3: Suppose a consistent system of linear equations has m equations in n unknowns. If

n > m, then the system has infinitely many solutions.

Proof: By Theorem 3.4.1, there are n− r free variables. Since n− r ≥ n−m > 0,

by Theorem 3.3.4 there are infinitely many solutions. �

These theorems give us the procedures and implications that allow us to completely solve any system

of linear equations. The main computational tool is using row operations to convert an augmented matrix

into reduced row-echelon form. Here is an outline of how we would solve a system of linear equations.

Steps of solving system of linear equations

1. Represent a system of linear equations in n unknowns by an augmented matrix.

2. Convert the matrix to a row-equivalent matrix in rref using the Gaussian elimination. Identify the

location of the leading columns, and the number of pivots r.

3. If column n+ 1 is a leading column, then the system is inconsistent.

4. If column n+ 1 is not a leading column, then there are two possibilities:
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(a) r = n and the solution is unique. It can be read off directly from the entries in rows 1 through n

of column n+ 1.

(b) r < n and there are infinitely many solutions. We can describe the solution sets by the n− r free

variables.
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