Chapter 2: Matrices

We want to solve

$$\begin{cases} 3x + 6y = 1, \\ y + z = 2, \\ -x + z = 3. \end{cases}$$
(\varnet)

To solve (\heartsuit) , the approaches shown in Chapter 1 only involve the coefficients and the constant terms of the linear system. So we arrange those coefficients and constants as the following rectangular arrays (called matrices):

$$A = \begin{bmatrix} 3 & 6 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & 1 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}.$$

Also we form the unknowns as the array $\boldsymbol{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$. We want to represent the system as $A\boldsymbol{x} = \boldsymbol{b}$. But, how do we define the product of two matrices A and \boldsymbol{x} ? What is the definition of two equal matrices?

2.1 Matrices

Definition 2.1.1: A matrix over \mathbb{R} is a rectangular display of scalars (real numbers). A matrix with m rows and n columns is called an $m \times n$ matrix or matrix of size $m \times n$. If m = n, then the matrix is called a square matrix of order n (or size n). We use the notation

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

to describe an $m \times n$ matrix, where $a_{ij} \in \mathbb{R}$ for $1 \leq i \leq m$ and $1 \leq j \leq n$. For short, we use $A = [a_{ij}] = (a_{ij})$. This notation indicates that A is the matrix whose general (i, j)-th entry is a_{ij} . To avoid some confusion we shall use the notation $[A]_{i,j}$ to denote the (i, j)-th entry of A.

Remark 2.1.2:

- 1. Some textbooks use large parentheses instead of brackets– the distinction is not important. In this course, we shall adopt both.
- 2. Rows of a matrix will be referenced starting at the top and working down (i.e., row 1 is at the top) and columns will be referenced starting from the left (i.e., column 1 is at the left).

Example 2.1.1:

$$B = \begin{bmatrix} -1 & 2 & 5 & 3\\ 1 & 0 & -6 & 1\\ -4 & 2 & 2 & -2 \end{bmatrix} = \begin{pmatrix} -1 & 2 & 5 & 3\\ 1 & 0 & -6 & 1\\ -4 & 2 & 2 & -2 \end{pmatrix}$$

is a matrix with m = 3 rows and n = 4 columns, i.e., B is a 3×4 matrix. We can say that $[B]_{2,3} = -6$ while $[B]_{3,4} = -2$.

Definition 2.1.3:

- 1. A column vector of size or length n is an ordered list of n numbers, which is written in order vertically, starting at the top and proceeding to the bottom. At times, we will refer to a column vector as simply a *vector*.
- 2. Column vectors will be written in bold, usually with lower case Latin letter from the end of the alphabet such as u, v, w, x, y, z.
- 3. Some books like to write vectors with arrows, such as \vec{u} . Writing by hand, some like to put arrows on top of the symbol (I shall use this notation written on the white board), or a tilde underneath the symbol, as in u, or a line under the symbol, as \underline{u} .
- 4. To refer to the *entry* or *component* of vector \boldsymbol{v} in location *i* of the list, we write $[\boldsymbol{v}]_i$.

Partition of Matrices 2.2

Sometimes we put horizontal lines or vertical lines to divide the matrix into different areas. It is same as the matrix without the lines.

Example 2.2.1: The matrix

1	2	3	4	3.5
0	-1	1	1.1	1
3	5.8	1	0	-3
1	8	0	0	7

is same as the following matrices:

Γ	1	2	3	4	3.5		1	2	3	4	3.5		1	2	3	4	3.5]
	0	-1	1	1.1	1		0	-1	1	1.1	1		0	-1	1	1.1	1	
	3	5.8	1	0	-3	,	3	5.8	1	0	-3	,	3	5.8	1	0	-3	,
	1	8	0	0	7		1	8	0	0	7		1	8	0	0	7	
Γ	1	2	3	4	3.5		1	2	3	4	3.5		- 1	2	3	4	3.5	
	0	-1	1	1.1	1		0	-1	1	1.1	1		0	-1	1	1.1	1	
	3	5.8	1	0	-3	,	3	5.8	1	0	-3	,	3	5.8	1	0	-3	•
	1	8	0	0	7		1	8	0	0	7		1	8	0	0	7	

Example 2.2.2:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \\ 7 & 8 \end{bmatrix}, \quad u = \begin{bmatrix} 9 \\ 10 \\ 11 \\ 12 \end{bmatrix}, \quad v = \begin{bmatrix} 13 \\ 14 \\ 15 \\ 16 \end{bmatrix}.$$
$$[A|u] = \begin{bmatrix} 1 & 2 & 9 \\ 3 & 4 & 10 \\ 5 & 6 & 11 \\ 7 & 8 & 12 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 9 \\ 3 & 4 & 10 \\ 5 & 6 & 11 \\ 7 & 8 & 12 \end{bmatrix}, \quad [A|u|v] = \begin{bmatrix} 1 & 2 & 9 & 13 \\ 3 & 4 & 10 & 14 \\ 5 & 6 & 11 & 15 \\ 7 & 8 & 12 & 15 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 9 & 13 \\ 3 & 4 & 10 & 14 \\ 5 & 6 & 11 & 15 \\ 7 & 8 & 12 & 15 \end{bmatrix}.$$

-

г

Example 2.2.3:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix},$$
$$C = \begin{bmatrix} 11 & 12 \\ 13 & 14 \\ 15 & 16 \end{bmatrix}, \quad D = \begin{bmatrix} 21 & 22 & 23 \\ 24 & 25 & 26 \\ 27 & 28 & 29 \end{bmatrix}.$$
$$[A|B] = \begin{bmatrix} 1 & 2 & 5 & 6 & 7 \\ 3 & 4 & 8 & 9 & 10 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 5 & 6 & 7 \\ 3 & 4 & 8 & 9 & 10 \end{bmatrix},$$
$$\frac{A|B|}{C|D|} = \begin{bmatrix} 1 & 2 & 5 & 6 & 7 \\ 3 & 4 & 8 & 9 & 10 \\ \hline 11 & 12 & 21 & 22 & 23 \\ 13 & 14 & 24 & 25 & 26 \\ 15 & 16 & 27 & 28 & 29 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 5 & 6 & 7 \\ 3 & 4 & 8 & 9 & 10 \\ 11 & 12 & 21 & 22 & 23 \\ 13 & 14 & 24 & 25 & 26 \\ 15 & 16 & 27 & 28 & 29 \end{bmatrix}$$

Definition 2.2.1: Suppose $A = (a_{ij})$ is an $m \times n$ matrix. For $1 \le i \le m$, the *i*-th row of A is the $1 \times n$ matrix $\begin{bmatrix} a_{i1} & \cdots & a_{in} \end{bmatrix}$ (or sometimes is viewed as a row vector (a_{i1}, \ldots, a_{in})) which is usually denoted by A_{i*} .

For $1 \le j \le n$, the *j*-th column of A is the $m \times 1$ matrix $\begin{bmatrix} a_{1j} \\ \vdots \end{bmatrix}$ and is usually denoted by A_{*j} .

So ${\cal A}$ can be represented partition matrices as

$$\begin{bmatrix} A_{1*} \\ A_{2*} \\ \vdots \\ A_{m*} \end{bmatrix} \text{ or } \begin{bmatrix} A_{*1} & A_{*2} & \cdots & A_{*n} \end{bmatrix}. \text{ Note that the hori-}$$

zontal or vertical lines are omitted.

2.3 Matrix Representations of Linear Systems

In general, we will consider the problem of solving n unknowns x_1, x_2, \ldots, x_n which satisfy the following m equations simultaneously:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m \end{cases}$$
(2.1)

where b_1, b_2, \ldots, b_m and a_{ij} $(1 \le i \le m, 1 \le j \le n)$ are given constants. For avoiding the confusion, sometimes we write $a_{i,j}$ to instead of a_{ij} . Let

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix} \text{ and } \boldsymbol{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}.$$
 (2.2)

MATH1030 Linear Algebra I-20/21-2-3

A is called the *coefficient matrix* (or *matrix of coefficients*) of the system (2.1) and **b** is called the vector of constants. We will write $\mathcal{LS}(A, \mathbf{b})$ as a shorthand expression for the system of linear equations (2.1), which we will refer to as the *matrix representation* of the linear system.

A solution $\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \end{bmatrix}$ is called a *solution vector*. But for saving space, we sometimes written a vector

as row form or an *n*-turple, for example, $\boldsymbol{x} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$ or $\boldsymbol{x} = (x_1, x_2, \dots, x_n)$. $\begin{bmatrix} A|\boldsymbol{b} \end{bmatrix} = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} & b_1 \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} & b_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} & b_n \end{bmatrix}$ is called an *augmented matrix* of the system.

$\mathbf{2.4}$ Algebra of Matrices

We denote $M_{m,n}(\mathbb{R})$ (or $M_{m,n}$) to be the set of all $m \times n$ matrices over \mathbb{R} . If m = n, then we sometimes use $M_n(\mathbb{R})$ to instead of $M_{n,n}(\mathbb{R})$. We also denote $M_{1,n}(\mathbb{R})$ as \mathbb{R}^n . But, mention again, we sometimes write element of \mathbb{R}^n as row vector form for saving space.

Definition 2.4.1: Two matrices A and B are said to be *equal*, which is denoted by A = B, if they are both of the same size and $[A]_{i,j} = [B]_{i,j} \quad \forall i, j.$

The symbol \forall means 'for every' or 'for each', but is read as 'for all'.

Definition 2.4.2: An $m \times n$ zero matrix, denoted by \mathcal{O} (or $\mathcal{O}_{m,n}$, or $\mathcal{O}_{m \times n}$), is a matrix whose entries are all zero. If m = n, then we use \mathcal{O}_n to instead of $\mathcal{O}_{n,n}$. If $A = (a_{ij}) \in M_n(\mathbb{R})$, then the sequence of entries $\{a_{11}, a_{22}, \ldots, a_{nn}\}$, is called the *diagonal* of A. A square matrix with zero entries everywhere except in the diagonal is called a *diagonal matrix*. The *identity matrix of order* n, denoted by I or I_n , is a diagonal matrix of order n with all entries in the diagonal are equal to 1.

For integers i, j, we define a notation δ_{ij} by

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

This is called the *Kronecker delta*. Then $[I_n]_{i,j} = \delta_{ij}$ for $1 \le i, j \le n$. Clearly, $\delta_{ij} = \delta_{ji}$.

Definition 2.4.3: Let U and L be $n \times n$ matrices. U is said to be upper triangular if $[U]_{i,j} = 0 \forall i > j$ and L is said to be *lower triangular* if $[L]_{i,j} = 0 \forall i < j$.

Therefore, a diagonal matrix is both upper and lower triangular matrix.

The zero vector $\mathbf{0} = \mathbf{0}_n$ of size (or length) n is a column vector of size n whose entries are 0, i.e.,

 $\mathbf{0}_n = \mathcal{O}_{n,1}$. The standard unit vectors of length n are

$$m{e}_1 = egin{bmatrix} 1 \ 0 \ 0 \ dots \ 0 \end{bmatrix}, m{e}_2 = egin{bmatrix} 0 \ 1 \ 0 \ dots \ 0 \end{bmatrix}, \dots, m{e}_n = egin{bmatrix} 0 \ 0 \ 0 \ dots \ 0 \end{bmatrix}.$$

That is, $[\boldsymbol{e}_i]_j = \delta_{i,j}, \ 1 \leq i, j \leq n$.

Definition 2.4.4: Let $A, B \in M_{m,n}$. The sum of A and that of B, denoted by A+B, is an $m \times n$ matrix whose (i, j)-th entry is the sum of the (i, j)-th entries of A and B, i.e., $(A+B)_{i,j} = (A)_{i,j} + (B)_{i,j} \forall 1 \le i \le m, 1 \le j \le n$. The operation "+" is called the *addition* (of matrices).

Example 2.4.1: If
$$A = \begin{bmatrix} 2 & -3 & 4 \\ 1 & 0 & -7 \end{bmatrix}$$
 and $B = \begin{bmatrix} 6 & 2 & -4 \\ 3 & 5 & 2 \end{bmatrix}$, then

$$A + B = \begin{bmatrix} 2 & -3 & 4 \\ 1 & 0 & -7 \end{bmatrix} + \begin{bmatrix} 6 & 2 & -4 \\ 3 & 5 & 2 \end{bmatrix} = \begin{bmatrix} 2+6 & -3+2 & 4+(-4) \\ 1+3 & 0+5 & -7+2 \end{bmatrix} = \begin{bmatrix} 8 & -1 & 0 \\ 4 & 5 & -5 \end{bmatrix}.$$

Proposition 2.4.5: Let $A, B, C \in M_{m,n}$. Then we have

(1)
$$A + B = B + A.$$
Commutativity of addition(2) $A + (B + C) = (A + B) + C.$ Associativity of addition(3) $A + O = A.$ Identity of addition(4) there is a unique matrix A' such that $A + A' = O.$ Inverse of addition

Since the additive inverse of A is unique, we use -A to denote it.

Definition 2.4.6: Let $A \in M_{m,n}$, $c \in \mathbb{R}$. Define $cA \in M_{m,n}$ by $(cA)_{i,j} = c(A)_{i,j}$, $1 \le i \le m$, $1 \le j \le n$. This multiplication is called *scalar multiplication* and *cA* is called the *scalar product* of A by c.

Example 2.4.2: If
$$A = \begin{bmatrix} 2 & 8 \\ -3 & 5 \\ 0 & 1 \end{bmatrix}$$
 and $c = 7$, then

$$cA = 7 \begin{bmatrix} 2 & 8 \\ -3 & 5 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7(2) & 7(8) \\ 7(-3) & 7(5) \\ 7(0) & 7(1) \end{bmatrix} = \begin{bmatrix} 14 & 56 \\ -21 & 35 \\ 0 & 7 \end{bmatrix}$$

Proposition 2.4.7: Let $A, B \in M_{m,n}$, $c, d \in \mathbb{R}$. Then we have

- (1) c(A+B) = cA + cB. Left distributive law for scalar multiplication
- (2) (c+d)A = cA + dA.

 $(3) \ (cd)A = c(dA).$

Right distributive law for scalar multiplication Associativity of scalar multiplication

- (4) 1A = A and (-1)A = -A.
- (5) Suppose $A \neq \mathcal{O}$ and $cA = \mathcal{O}$. Then c = 0.

Back to see the system (\heartsuit), we want to write the system as Ax = b. So we have the following definition.

Definition 2.4.8: Suppose A is an $m \times n$ matrix with columns A_{*1}, \ldots, A_{*n} and u is a vector of size n. Then the *matrix-vector product* of A with u is the linear combination

$$A\boldsymbol{u} = [\boldsymbol{u}]_1 A_{*1} + [\boldsymbol{u}]_2 A_{*2} + \dots + [\boldsymbol{u}]_n A_{*n} = \sum_{i=1}^n [\boldsymbol{u}]_i A_{*i}.$$
 (2.3)

So, the matrix-vector product is yet another version of *multiplication*, at least in the sense that we have yet again overloaded juxtaposition of two symbols as our notation. Note that, an $m \times n$ matrix times a vector of size n will create a vector of size m. So if A is rectangular, then the size of the vector changes.

Let us write down (2.3) more precisely. Let $A = (a_{i,j})$ and $\boldsymbol{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$.

$$A\boldsymbol{u} = \begin{bmatrix} u_1a_{1,1} + u_2a_{1,2} + \dots + u_na_{1,n} \\ u_1a_{2,1} + u_2a_{2,2} + \dots + u_na_{2,n} \\ \vdots \\ u_1a_{m,1} + u_2a_{m,2} + \dots + u_na_{m,n} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n u_ia_{1,i} \\ \sum_{i=1}^n u_ia_{2,i} \\ \vdots \\ \sum_{i=1}^n u_ia_{m,i} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n a_{1,i}u_i \\ \sum_{i=1}^n a_{2,i}u_i \\ \vdots \\ \sum_{i=1}^n a_{m,i}u_i \end{bmatrix}$$

Now, system (\heartsuit) can be written as

$$A\boldsymbol{x} = \begin{bmatrix} 3 & 6 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \boldsymbol{b}.$$

Example 2.4.3: Consider

$$A = \begin{bmatrix} 1 & 4 & 2 & 3 & 4 \\ -3 & 2 & 0 & 1 & -2 \\ 1 & 6 & -3 & -1 & 5 \end{bmatrix}, \quad u = \begin{bmatrix} 2 \\ 1 \\ -2 \\ 3 \\ -1 \end{bmatrix}$$

Then

$$A \boldsymbol{u} =$$

Proposition 2.4.9: The set of solutions to the linear system (2.1) equals the set of solutions for \boldsymbol{x} in the vector equation $A\boldsymbol{x} = \boldsymbol{b}$, where A and \boldsymbol{b} are defined in (2.2) and $\boldsymbol{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$.

Theorem 2.4.10: Suppose that A and B are $m \times n$ matrices such that $A\mathbf{x} = B\mathbf{x}$ for every $\mathbf{x} \in \mathbb{R}^n$. Then A = B.

Proof: Since $A\mathbf{x} = B\mathbf{x} \ \forall \mathbf{x} \in \mathbb{R}^n$,

Definition 2.4.11: Let $A \in M_{m,n}$ and $B \in M_{n,p}$. We define the *product* $AB \in M_{m,p}$ by

$$AB = A \left[\begin{array}{c} B_{*1} \\ B_{*2} \\ \end{array} \right| \cdots \\ \left| \begin{array}{c} B_{*p} \\ B_{*p} \end{array} \right] = \left[\begin{array}{c} AB_{*1} \\ AB_{*2} \\ \end{array} \right| \cdots \\ \left| \begin{array}{c} AB_{*p} \\ B_{*p} \end{array} \right].$$

How to memorize the formula: To find the (i, j)-th entry of AB.

(1) Find the *i*-th row of A (simply called <u>the row</u> below).

- (2) Find the *j*-th column of B (simply called <u>the column</u> below).
- (3) sum up the product the corresponding entries of the row and the column, i.e., (entry 1 of the row \times entry 1 of the column) + (entry 2 of the row \times entry 2 of the column) + ...

Example 2.4.4: Suppose

$$A = \begin{bmatrix} 1 & 2 & -1 & 4 & 6 \\ 0 & -4 & 1 & 2 & 3 \\ -5 & 1 & 2 & -3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 6 & 2 & 1 \\ -1 & 4 & 3 & 2 \\ 1 & 1 & 2 & 3 \\ 6 & 4 & -1 & 2 \\ 1 & -2 & 3 & 0 \end{bmatrix}.$$

Find the (3, 2)-entry of AB and also find AB.

The 3-rd row of A is $\begin{bmatrix} -5 & 1 & 2 & -3 & 4 \end{bmatrix}$ The 2-rd column of B is $\begin{bmatrix} 6 \\ 4 \\ 1 \\ 4 \\ -2 \end{bmatrix}$.

Let us do the multiplication:

row	-5	1	2	-3	4
column	6	4	1	4	-2
product	-30	4	2	-12	-8

The sum is

-30 + 4 + 2 - 12 - 8 = -44.

Remark 2.4.12: Note that *B* and *A* must be of the proper size in order that *BA* is defined. Even if *AB* is defined, *AB* may not equal to *BA*. For example, $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ then $AB = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ and $BA = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. Thus matrix multiplication is *not commutative*. Also note that the product of two nonzero matrices may be a *zero* matrix as the above example shown.

Proposition 2.4.13: For A, B and C are matrices (when the statement includes the matrix multiplication, the sizes of A, B, C, the identity matrix I and zero matrix O are chosen suitably), $c \in \mathbb{R}$, we have

(1) $(cA)B = A(cB) = c(AB).$	Scalar pull through
(2) (AB)C = A(BC).	Associativity of multiplication
(3) AI = A, IB = B.	Identity for multiplication
(4) A(B+C) = AB + AC.	Left distributive law
(5) (A+B)C = AC + BC.	Right distributive law
(6) $A\mathcal{O} = \mathcal{O} \text{ and } \mathcal{O}B = \mathcal{O}.$	Zero matrix for multiplication

Proof:

It is because that the associative law holds on addition, scalar multiplication and multiplication, we usually omit to write the parentheses "()".

Let A be a square matrix and n a positive integer. A^n denotes the product of n A's, i.e., $A^n = AA \cdots A$. By convention, we let $A^0 = I$.

Definition 2.4.14: The transpose A^t of a matrix $A = [a_{ij}] \in M_{m,n}$ is the matrix in $M_{n,m}$ that whose (i, j)-th entry is a_{ji} . That is,

$$[A^t]_{i,j} = [A]_{j,i} \ \forall \ i = 1, \dots, n, \ j = 1, \dots, m.$$

Proposition 2.4.15: Let A and B be matrices (when the statement includes the matrix multiplication, the sizes of A and B are chosen suitably). Then

(1) $(A^t)^t = A$. Transpose of the transpose (2) $(A + B)^t = A^t + B^t$. Transpose of a sum (3) $(AB)^t = B^t A^t$. Transpose of a product (4) $(cA)^t = cA^t$ for $c \in \mathbb{R}$.

Proof:

Definition 2.4.16: A square matrix S is called symmetric if $S^t = S$, i.e., $[S]_{i,j} = [S]_{j,i} \forall i, j$. A square matrix A is called skew-symmetric or anti-symmetric if $A^t = -A$, i.e., $[A]_{i,j} = -[A]_{j,i} \forall i, j$.

n times

Example 2.4.5: The matrix

$$A = \begin{bmatrix} 2 & 3 & -9 & 5 & 7 \\ 3 & 1 & 6 & -2 & -3 \\ -9 & 6 & 0 & -1 & 9 \\ 5 & -2 & -1 & 4 & -8 \\ 7 & -3 & 9 & -8 & -3 \end{bmatrix}$$
$$B = \begin{bmatrix} 0 & 3 & -9 & 5 & 7 \\ -3 & 0 & 6 & -2 & -3 \\ 9 & -6 & 0 & -1 & 9 \\ -5 & 2 & 1 & 0 & -8 \\ -7 & 3 & -9 & 8 & 0 \end{bmatrix}$$

- 7

is skew-symmetric.

is symmetric.

The matrix

Proposition 2.4.17: Let $A \in M_n(\mathbb{R})$ be a skew-symmetric matrix. Then each entry in the diagonal of A is zero, i.e., $[A]_{i,i} = 0$ for each i.

2.5 Block Multiplication

Let $A \in M_{m,n}$ and $B = (B_1 | B_2)$, where $B_1 \in M_{n,p_1}$ and $B_2 \in M_{n,p_2}$. By Definition 2.4.11, we have $AB = (AB_1 | AB_2)$. It can be generalized to block (matrix) multiplication.

Let $A \in M_{m,n}$. Suppose that there are two partitions of m and n. Namely, $m = m_1 + \cdots + m_r$ and $n = n_1 + \cdots + n_s$ for some positive integers m_i , n_j $(1 \le i \le r, 1 \le j \le s)$. Then A can be partitioned into rs submatrices as a partitioned matrix:

$$A = \begin{pmatrix} A^{1,1} & \cdots & A^{1,s} \\ \vdots & \vdots & \vdots \\ \hline A^{r,1} & \cdots & A^{r,s} \end{pmatrix},$$

where each $A^{i,j}$ is an $m_i \times n_j$ submatrices of A.

Suppose B is an $n \times p$ matrix of a partitioned matrix

$$B = \begin{pmatrix} B^{1,1} & \cdots & B^{1,t} \\ \vdots & \vdots & \vdots \\ \hline B^{s,1} & \cdots & B^{s,t} \end{pmatrix},$$

where $p = p_1 + \cdots + p_t$, p_1, \ldots, p_t are positive integers and each $B^{j,k}$ is an $n_j \times p_k$ submatrices of B. Let C = AB. Then C is an $m \times p$ matrix which may be partitioned in a partitioned matrix:

$$C = \begin{pmatrix} C^{1,1} & \cdots & C^{1,t} \\ \vdots & \vdots & \vdots \\ \hline C^{r,1} & \cdots & C^{r,t} \end{pmatrix},$$

where each $C^{i,k}$ is an $m_i \times p_k$ submatrices of C.

By a tedious but straightforward verification, one can show that $C^{i,k} = \sum_{j=1}^{s} A^{i,j} B^{j,k}$ for each i, k.

Such multiplication is referred as *partitioned multiplication* or *block multiplication*. Thus when we multiply two partitioned matrices, we may regard blocks as entries and multiply in the usual way.

$$A = \begin{pmatrix} 1 & 1 & 0 & 1 & 2 & 2 & 1 \\ 0 & -1 & -1 & -1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ \hline 0 & 1 & 0 & 2 & 3 & 1 & 2 \end{pmatrix}$$
$$B = \begin{pmatrix} 1 & 2 & 3 & 1 & 1 & 0 & 1 \\ 0 & 1 & 2 & -3 & -1 & 0 & -1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ \hline 2 & 2 & 1 & -3 & 0 & 0 & 0 \\ \hline -2 & 3 & -1 & 0 & -1 & 1 & 2 \\ \hline 0 & 1 & 0 & 1 & 3 & 0 & 2 \\ 1 & 0 & 0 & 2 & 0 & -1 & 0 \end{pmatrix}.$$

Let C = AB. Then C can be written as a block form:

$$C = \begin{pmatrix} C^{1,1} & C^{1,2} & C^{1,3} \\ \hline C^{2,1} & C^{2,2} & C^{2,3} \\ \hline C^{3,1} & C^{3,2} & C^{3,3} \end{pmatrix},$$

where $C^{1,1}$ is a 2 × 1 matrix, $C^{1,2}$ is a 2 × 2 matrix, $C^{1,3}$ is 2 × 4 matrix and so on.

We consider the matrix $C^{1,3}$. Since $C^{1,3} = A^{1,1}B^{1,3} + A^{1,2}B^{2,3} + A^{1,3}B^{3,3}$,

$$\begin{aligned} C^{1,3} &= \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 & 1 \\ -3 & -1 & 0 & -1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \\ &+ \begin{pmatrix} 1 & 2 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} -3 & 0 & 0 & 0 \\ 0 & -1 & 1 & 2 \end{pmatrix} + \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 & 0 & 2 \\ 2 & 0 & -1 & 0 \end{pmatrix} \\ &= \begin{pmatrix} -2 & 0 & 0 & 0 \\ 3 & 0 & -1 & 0 \end{pmatrix} + \begin{pmatrix} -3 & -2 & 2 & 4 \\ 3 & 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 4 & 6 & -1 & 4 \\ 3 & 3 & -1 & 2 \end{pmatrix} \\ &= \begin{pmatrix} -1 & 4 & 1 & 8 \\ 9 & 3 & -2 & 2 \end{pmatrix}. \end{aligned}$$

One can compute all the $C^{i,j}$'s and obtains

$$C = \begin{pmatrix} 0 & 13 & 4 & -1 & 4 & 1 & 8 \\ -2 & -2 & -3 & 9 & 3 & -2 & 2 \\ \hline 5 & 5 & 4 & 1 & 5 & 0 & 4 \\ 0 & 3 & -1 & 2 & 0 & 1 & 3 \\ \hline 0 & 15 & 1 & -4 & -1 & 1 & 7 \end{pmatrix}.$$

Example 2.5.2: Let A be an $m \times n$ matrix and B be an $n \times p$ matrix. By using the block multiplication we have

$$AB = \begin{pmatrix} A_{1*}B \\ A_{2*}B \\ \vdots \\ A_{m*}B \end{pmatrix}.$$

 $A = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ \hline 0 & 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & | & -1 & 1 \end{pmatrix}. \text{ Let } D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, B = \begin{pmatrix} 2 & 3 \\ -1 & 1 \end{pmatrix}.$ Then $A = \begin{pmatrix} D & O_{3,2} \\ O_{2,3} & B \end{pmatrix}.$ And then $A^2 = \begin{pmatrix} D^2 & O_{3,2} \\ O_{2,3} & B^2 \end{pmatrix}, A^3 = \begin{pmatrix} D^3 & O_{3,2} \\ O_{2,3} & B^3 \end{pmatrix}.$ It is easy to see that $D^3 = \begin{pmatrix} 8 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$. We only need to compute B^3 $B^{2} = \begin{pmatrix} 2 & 3 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 9 \\ -3 & -2 \end{pmatrix}$ $B^{3} = \begin{pmatrix} 2 & 3 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 9 \\ -3 & -2 \end{pmatrix} = \begin{pmatrix} -7 & 12 \\ -4 & -11 \end{pmatrix}.$ $D^{3} = \begin{pmatrix} 8 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, B^{3} = \begin{pmatrix} -7 & 12 \\ -4 & -11 \end{pmatrix}.$ Then $A^{3} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ \hline 0 & 0 & 0 & -7 & 12 \end{pmatrix}.$