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Abstract—“Belief propagation” (BP) is an efficient way to
solve “inference” problems in graphical models, such as Bayesian
networks and Markov random fields. It has found great success
in many application areas due to its simplicity, high accuracy,
and distributed nature. This paper is a first attempt to apply
BP algorithms in CSMA wireless networks. Compared to prior
CSMA optimization algorithms such as ACSMA, which are
measurement-based, BP-based algorithms are proactive and com-
putational, without the need for network probing and traffic
measurement. Consequently, BP-based algorithms are not af-
fected by the temporal throughput fluctuations and can converge
faster. Specifically, this paper explores three applications of BP.
1) We show how BP can be used to compute the throughputs
of different links in the network given their access intensities,
defined as the mean packet transmission time divided by the mean
backoff countdown time. 2) We propose an inverse-BP algorithm
to solve the reverse problem of how to set the access intensities of
different links to meet their target throughputs. 3) We introduce
a BP-adaptive CSMA algorithm to find the link access intensities
that can achieve optimal system utility. The first two applications
are NP-hard problems, and BP provides good approximations to
them. The advantage of BP is that it can converge faster compared
to prior algorithms like ACSMA, especially in CSMA networks
with temporal throughput fluctuations. Furthermore, this paper
goes beyond BP and considers a generalized version of it, GBP,
to improve accuracy in networks with a loopy contention graph.
The distributed implementation of GBP is nontrivial to construct.
A contribution of this paper is to show that a “maximal clique”
method of forming regions in GBP: 1) yields accurate results; and
2) is amenable to distributed implementation in CSMA networks,
with messages passed between one-hop neighbors only. We show
that both BP and GBP algorithms for all three applications can
yield solutions within seconds in real operation.

Index Terms—Belief propagation, CSMA, IEEE 802.11.

I. INTRODUCTION

B ELIEF propagation (BP) is a popular algorithm to solve
“inference” problems in graphical models, such as

Bayesian networks and Markov random fields (MRFs) [1].
Thanks to its simplicity, high accuracy, and distributed nature,
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BP has been widely used and has demonstrated empirical suc-
cess in various areas such as artificial intelligence, information
theory, and computer vision [2]–[4]. The Bayesian belief prop-
agation [2], the iterative decoding algorithms for LDPC codes
[3], the VISTA-Vision algorithm [4], and the transfer-matrix
approach in physics [5] are special cases of BP algorithms
discovered in different scientific communities.

The BP algorithm was first proposed by Judea Pearl in 1988,
assuming that the underlying graphical model is a tree [2].
Specifically, given a treelike graphical model, we can obtain a
natural iterative inference-making algorithm in which variable
nodes pass messages among each other along edges of the
graphical model. For tree graphs, it can be shown that the BP
algorithm is an implementation of the Bayesian’s formula, and
it yields exact result with no approximation. The BP algorithm
was applied to “loopy” graphical models with the simplifying
assumption that the graphical model is still a tree (i.e., the same
Bayesian formula for tree graphs is used in loopy graphs).
Somewhat surprisingly, this BP heuristic has been found to
work well empirically in terms of the approximate results it
yields, as well as convergence [1], [2].

This paper considers three applications of BP in CSMA net-
works. Specifically, we use BP to solve two NP-hard problems
in CSMA networks approximately and propose a new adaptive
utility-optimization algorithm for CSMA networks. Compared
to prior measurement-based algorithms for CSMA network con-
trol and optimization [6], BP-based algorithms are proactive
and computational, without the need for network probing and
traffic measurement. Consequently, BP algorithms are not af-
fected by the temporal throughput fluctuations and can converge
faster. Going beyond BP, we consider a generalized version of it,
GBP, to improve accuracy in networks with a loopy contention
graph. Importantly, we show how the BP and GBP algorithms
can be implemented in a distributed manner in CSMA networks,
making them useful in real operation. To the best of our knowl-
edge, this is the first paper to use the BP framework to solve
problems related to CSMA networks.

The first and the most direct application considered by us is
to use BP to compute (infer) the throughputs of different links
in a CSMA network given their access intensities. The access
intensity of a link is the ratio of its average packet transmission
time to its average backoff countdown time. Higher access in-
tensity corresponds to higher aggressiveness of the link when
it competes with other links for airtime under the CSMA pro-
tocol. The problem of computing link throughputs of a CSMA
network is known to be NP-hard [7]. We show, however, that BP
can obtain accurate approximate results within a short time, and
its improved algorithm, GBP, can reduce the errors induced by
loops significantly.

The second application is the reverse problem of computing
link access intensities to meet some target link throughputs. We
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propose an Inverse Belief Propagation (IBP) algorithm for this
purpose. IBP works well in terms of both speed and accuracy.
Analogous to GBP, we propose Inverse GBP (IGBP) to reduce
the errors in the access intensities found. Importantly, we show
that IBP and IGBP can be easily implemented in a distributed
manner, with messages passed between neighbors only. For a
network of up to 200 links, both algorithms can yield solutions
within seconds in real network operation.

The third application is on network utility optimization.
We propose a BP-adaptive CSMA algorithm (BP-ACSMA) to
achieve the optimal system utility. Compared to prior work,
an advantage of BP-ACSMA is that it is a proactive compu-
tational algorithm without the need for network probing and
traffic measurement. Thus, it will not be affected by the tem-
poral throughput fluctuations in CSMA wireless networks [8].
We further propose a generalized version of BP-ACSMA,
GBP-ACSMA, for higher accuracy in loopy graphs. Our simu-
lation results indicate that the achieved aggregate throughputs
and system utility are near-optimal.

Related Work: There have been numerous publications on
throughput analysis and optimization of CSMA wireless net-
works (e.g., IEEE 802.11 networks). With respect to throughput
analysis, [9] considered the throughput computation of CSMA
wireless networks under the assumption of Poisson arrivals
and exponential packet transmission durations. The authors
of [9] showed that the link throughputs can be computed from a
Markov chain, yielding a closed-form solution. Reference [10]
made the same assumptions to investigate how the contention
window in the CSMA protocol can be adapted to achieve
a specific fairness target. Reference [11] studied interesting
phenomena (e.g., border effects and phase transition) in large
regular CSMA networks when the access intensity is high. Re-
cent work [7] removed the Markovian assumption by showing
that the throughput distribution is insensitive to the distributions
of the packet transmission duration and backoff countdown
time. In addition, [7] proposed a quick “back-of-the-envelope”
(BoE) algorithm for link throughputs computation in CSMA
wireless networks. As shown there, BoE could handle networks
of up to 50 links with high accuracy and speed. Networks of
larger size were left as an open issue. The BP/GBP algorithm
proposed in this paper fills this gap.

With respect to network control and optimization, making
use of an ideal carrier-sensing network model similar to that
in [7] and this paper (see Section II), [6] proposed an elegant
adaptive CSMA (ACSMA) algorithm to achieve optimal net-
work utility. The ACSMA algorithm is a “probe and measure”
scheme. Specifically, before a link adjusts its access intensity, a
period of “smoothing” time is needed to measure the difference
in the link’s input traffic and output traffic. As will be shown in
this paper, the required smoothing time can be quite excessive
in networks that exhibit temporal starvation, resulting in very
slow convergence. By contrast, the BP/GBP-based algorithms
in this paper do not have this problem because they are compu-
tation-based rather than measurement-based.

BP as an inference-making methodology has been studied ex-
tensively. A good reference for BP is [1]. Reference [1] also
presented GBP, without focusing on specific application do-
mains. In particular, the treatment of GBP in [1] was general,
and distributed implementation was not considered. An impor-
tant contribution of our paper is to show that a “maximal clique”

method of forming “regions” in GBP allows us to design dis-
tributed GBP algorithms for CSMA networks. Furthermore, this
region-forming method yields good performance in CSMA net-
works.

In graphical models, there are two key inference problems: 1)
the computation of marginal distributions of random variables;
and 2) finding the maximum a posteriori probability. BP can be
adapted to solve both algorithms, known as the “sum-product
algorithm” and “max-product algorithm,” respectively. The ap-
plications of BP in CSMA networks fall into the first category.

General necessary convergence conditions of loopy BP (LBP)
to a unique fixed-point solution are still unknown, although
sufficient conditions have been investigated extensively in
the literature [1], [12]–[15]. References [1] and [15] related
the convergence of LBP to the uniqueness of a sequence of
Gibbs measures defined on the associated computation tree
and derived sufficient conditions for convergence of BP. Ref-
erences [12] and [14] investigated the message update rules
and examined whether the message update functions of LBP
algorithms are contraction mapping. Message error propaga-
tion has been studied to understand how the performance of
convergence will be affected [13]. In general, BP convergence
is nontrivial to prove. References [1] and [12]–[15] made an
assumption that the compatibility function (to be defined in
Section III) is positive, which unfortunately does not hold in
our BP in CSMA networks. With respect to the convergence of
BP in this paper, we can only prove that IBP is a contraction
mapping and guaranteed to converge. The rigorous convergence
proofs of BP and BP-ACSMA, await future work. We remark
that in our simulation studies, we observe convergence at all
time.

To save space, some derivations and results are omitted in this
paper. They can be found in our technical report [16].

The remainder of this paper is organized as follows. Section II
introduces our system model and reviews its equilibrium anal-
ysis. Section III shows how to use BP for link throughput com-
putation in large CSMA wireless networks. Section IV investi-
gates the reverse problem: given the target link throughputs, how
to find the link access intensities to meet them. Section V pro-
poses BP-ACSMA for network utility optimization. Section VI
shows how GBP can be used to solve the same problems as in
Sections III–V, but with higher accuracy. Section VII concludes
this paper.

II. SYSTEM MODEL

In this section, we first review an idealized version of the
CSMA network (ICN) to capture the main features of the CSMA
protocol responsible for the interaction and dependency among
links. The ICN model was used in several prior investigations
[6], [7], [10], [11].1

A. ICN Model

In ICN, the carrier-sensing relationship among links is
described by a contention graph .2 Each link is

1The correspondence between ICN and the IEEE 802.11 protocol [17] can be
found in [7].

2Note that the pairwise carrier-sensing model is used in this paper. It is known
that the cumulative interference model (or physical interference model) captures
packet corruption more accurately compared to the pairwise interference model.
However, it is possible to implement pairwise carrier sensing (as modeled by the
contention graph) that can prevent collisions under the cumulative interference
model [18]. In this case, hidden-node collisions can be effectively eliminated.
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Fig. 1. (a) Example contention graph and (b) its state-transition diagram.

modeled as a vertex . Edges, on the other hand, model
the carrier-sensing relationships among links. There is an edge
between two vertices if the transmitters of the two associated
links can sense each other. In this paper, we will use the terms
“links” and “vertices” interchangeably.

At any time, a link is in one of two possible states, active or
idle. A link is active if there is a data transmission between its
two end nodes. Thanks to carrier sensing, any two links that can
hear each other will refrain from being active at the same time.
A link sees the channel as idle if and only if none of its neighbors
is active.

In ICN, each link maintains a backoff timer , the initial value
of which is a random variable with an arbitrary distribution

. The timer value of the link decreases in a continuous
manner with as long as the link senses the channel
as idle. If the channel is sensed busy (due to a neighbor transmit-
ting), the countdown process is frozen and . When
the channel becomes idle again, the countdown continues with

initialized to the previous frozen value. When reaches 0, the
link transmits a packet. The transmission duration is a random
variable with arbitrary distribution . After the transmis-
sion, the link resets to a new random value according to the
distribution , and the process repeats. We define the ac-
cess intensity of a link as the ratio of its mean transmission du-
ration to its mean backoff time: .

Let denote the state of link , where if
link is active (transmitting) and if link is idle (actively
counting down or frozen). The overall system state of ICN is

, where is the number of links in the net-
work. Note that and cannot both be 1 at the same time
if links and are neighbors because: 1) they can sense each
other; and 2) the probability of them counting down to zero and
transmitting together is 0 under ICN (because the backoff time
is a continuous random variable).

The collection of feasible states corresponds to the collection
of independent sets of the contention graph. An independent
set (IS) of a graph is a subset of vertices such that no edge joins
any two of them [19].

As an example, Fig. 1(a) shows the contention graph of a net-
work consisting of four links. In this network, link 1 can only
sense link 2 while links 2–4 can sense each other. Fig. 1(b)
shows the associated state-transition diagram under the ICN
model. To avoid clutters, we have merged the two directional
transitions between two states into one line in Fig. 1(b). Each
transition from left to right corresponds to the beginning of the
transmission of one particular link, while the reverse transition
corresponds to the ending of the transmission of that link.

B. Equilibrium Analysis

This part is a quick review of the result in [7], and the reader is
referred to [7] for details. If we assume that the backoff time and
transmission time are exponentially distributed, then is a
time-reversible Markov process. For any pair of neighbor states
in the continuous-time Markov chain, the transition from the left
state to the right state occurs at rate , and the transition
from the right state to the left state occurs at rate .

Let denote the set of all feasible states, and be the
number of transmitting links when the system is in state

. The stationary distribution of state can be shown
to be

where (1)

The fraction of time during which link transmits is
, which corresponds to the normalized throughput

of link .
Reference [7] showed that (1) is in fact quite general and

does not require the system state to be a Markov process.
In particular, (1) is insensitive to the distribution of the trans-
mission duration and the distribution of the backoff du-
ration , given the ratio of their mean .

Note that in (1) is a weighted sum of independent sets of .
In statistical physics, is referred to as the partition function,
and the computation of is the crux of many problems, which
is known to be NP-hard [19].

For the case where different links have difference access
intensities, (1) can be generalized by replacing with the

, where is the access intensity of link .
Importantly, [7] showed that the contention graph associated

with ICN is an MRF with respect to the probability distribution
of its system states. This result suggests that the ICN model may
allow us to generate useful network-control algorithms based on
the BP framework. This is the main thrust of this paper.

C. Brief Discussion of Collision Effects in CSMA Networks

Here, we briefly discuss the collision effects in CSMA net-
works. Generally, in practical CSMA networks, there are two
kinds of collision events: 1) hidden-node collisions caused by
two nodes that cannot sense each other but yet can interfere with
each other; 2) backoff collisions caused by two nodes (who can
mutually sense each other) counting down to zero simultane-
ously in their backoff process and then transmitting together.
We assume that the CSMA network is hidden-node-free. This
can be achieved by properly setting the carrier-sensing power
threshold as in [18].

Backoff collisions are unavoidable in practical networks,
especially when the network is highly populated. The ICN
model is an idealized model that models away such collisions
by the adoption of a continuous-time countdown process.
That is, it models a system in which the “minislot” used in
the countdown backoff process is very small, and that carrier
sensing is instantaneous. In [20], we proposed a generalized
ICN (GICN) model for a perturbation analysis that tries to
capture the effects of backoff collisions. However, as can
be seen from [20, Section V], the effect of collisions is not
significant as far as the link throughputs are concerned. That is,
the original ICN model yields good approximations with errors
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within 10% even though it does not incorporate the collision
effect. Furthermore, the perturbation analysis based on GICN
is topology-dependent, and a general mechanism to transform
it to a general BP algorithm is lacking. For the above two
reasons, in this paper, we stick to the original ICN model. We
remark that the main goal of our BP algorithms is to compute
results in the right ballpark so that we can use them in network
design and control (e.g., our BP-ACSMA): Prevention of link
starvation [7] is more important than exact throughputs. In that
respect, we believe that ICN suffices.

III. THROUGHPUT COMPUTATION USING BP

This section describes a direct application of BP in CSMA
networks: quick computation of the throughputs of links.

A. Motivation

As mentioned earlier, exact link throughput computation
using (1) is an NP-hard problem. Thus, the problem can be-
come intractable for large CSMA networks. As detailed in [7],
for networks of more than 100 links, ICN computation can
be rather time-consuming. An outstanding problem is to find
quick and accurate approximate methods for large-scale CSMA
wireless networks. This section is dedicated to this pursuit
using BP.

B. Mapping ICN to BP

Under the framework of BP, the dependency between the
states and of two neighbor vertices and is captured
using a compatibility function , defined as follows:

if
otherwise.

(2)

In other words, the state and the state are
not compatible because under CSMA, the two neighbor links
cannot transmit together.

Recall that for an isolated link , ,
and . That is, and

for an isolated link. Thus, we give a weight to
each possible state as follows:

(3)

In particular, and in (3) capture the
relative likelihoods of states and if link were an
isolated link without neighbors.

It is not difficult to verify that the stationary probability of the
system state in (1) can be rewritten as

(4)

Note that in (4), if is infeasible, a compatibility term
will be zero and will be zero.

In ICN, the normalized throughput of link is the marginal
probability . In the context of BP,

, , corresponds to the belief at vertex , denoted
by , .

C. Message Update Rules in BP

With the stationary distribution expressed in the form of (4),
we next show how to use the BP algorithm to solve for .
The reader is referred to [1] for a general and detailed treatment

of BP. Here, we focus on BP as applied to CSMA networks
only. When applying BP to CSMA networks, each vertex has
an “intrinsic” belief of what the value of should be. This
intrinsic belief corresponds to the state probabilities of an iso-
lated link. For an isolated link, we have .

In addition, each vertex receives messages from its neigh-
bors as to what they “think” should be. Let denote the
neighbors of vertex in . Each neighbor passes a mes-
sage to vertex as to its “belief” of . The beliefs
of link and all links are then aggregated into an overall
belief in the form of a product

(5)

where is a normalization constant so that
.
The messages are determined by the message update rule

(6)

Note that . That
is, it is proportional to the aggregated belief at vertex with
the message from to factored out. In tree graphs, this mes-
sage update rule can also be understood as the expression of the
Bayes’ formula [1].

The BP algorithm iterates (6) over all vertices . In each
iteration, we could normalize the messages according to

for .3 The iteration stops when
converges or a maximum number of iterations is

reached.

D. Complexity of BP

It is known that (5) and (6) give exact solutions in tree graphs.
Furthermore, each message needs only be computed once before
convergence in tree graphs (i.e., the number of iterations equals
to the diameter of the contention graph [19]) [2]. Appendix A
of our technical report [16] shows that in a tree graph, the BP
messages can be interpreted as the partition functions of sub-
graphs. This interpretation reveals why BP can give exact link
throughputs in networks with loop-free contention graphs.

For loopy graphs, assuming that the maximum vertex degree
in the contention graph (i.e., the maximal number of neighbors
of vertices in the graph) is , from (6) we know that one
summation and two multiplications are required in
each iteration. Furthermore, the number of message exchanges
in each iteration of each link is bounded by . Then, the
complexity of the BP algorithm largely depends on its conver-
gence quality. Unfortunately, as explained in Section I, in gen-
eral the convergence of the BP algorithm for loopy graphs is
nontrivial to prove. Empirically, as can be seen from the simu-
lation results later, we observed that BP algorithms converge in
dozens of iterations for various network topology settings. The
complexity of BP algorithms can be roughly bounded as sum-
mation and multiplications for each link, where

3If we normalize the beliefs in (5) without normalizing the messages, the mag-
nitudes of the messages may grow unbounded, but not the beliefs themselves.
Thus, the algorithm may still be well-behaved if the beliefs converge quickly.
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is the empirically observed number of iterations. We find that
is below 100 in all the network settings we tested.

E. Distributed BP

BP can be easily implemented in a distributed manner, with
messages exchanged between two neighbors who can mutu-
ally carrier-sense each other. The distributed implementation is
rather obvious, and interested readers are referred to [16, Section
III-D] for details. This paper will only present the less obvious
distributed implementation of GBP.

F. BP in Loopy Contention Graphs

Although BP can often give good approximations, as pointed
out in [2], if we apply BP in loopy contention graphs, the in-
formation may circulate indefinitely around loops, and BP may
give inaccurate solutions and even not converge.

Consider a triangular graph consisting of three vertices. In BP,
messages are passed between each pair of neighboring vertices.
Vertex 1 gives certain information to vertex 2, some of which
is included in the information from vertex 2 to vertex 3 and fi-
nally passed back to vertex 1, where it is regarded as a “new” in-
coming message. This message contains information correlated
with the original information at vertex 1. The message update
rule and the belief computation formula, however, do not take
this correlation into account.

When the loop is large, the information a vertex gives out
vanishes along the cycle back to , resulting in a smaller com-
putation error. It can be shown that BP converges to the fixed
point for each vertex in
any -vertex ring graph regardless of (the derivation can be
found in [16, Appendix D]). Reference [21, Section III-A] de-
rived the equilibrium throughputs of links in a 1-D ring network.
Using the results above, we can evaluate the errors of BP in a
ring graph in terms of . Given a value of
(typical in 802.11 networks), the errors of BP for different
are the following:

• 8% for the 3-vertex ring;
• 0.1% for the 8-vertex ring;
• zero for the -vertex ring as .

That is, the error of BP decreases as the length of the cycle
increases.

From the ring example, we see that small loops cause more
significant errors. This suggests that to contain errors in general
graphs, we want to eliminate small loops in message propaga-
tion. This is the basic idea behind GBP.

The theoretical details of GBP will be presented in
Section VI. For easy comparison, we next present simula-
tion results on the performance of GBP together with BP first.

G. Experimental Evaluation

Reference [7] proposed the BoE algorithm for link through-
puts computation in CSMA wireless networks. BoE could only
handle networks of up to 50 links. Networks of larger size were
left as an open issue. Therefore, the focus of our experiments
here is on the accuracy and speed of BP and GBP for networks
of more than 50 links.

For our experiments, we implement both algorithms in a
centralized manner using MATLAB programs. The through-
puts computed by BP and GBP are compared to that obtained
from an ICN-simulator to examine their accuracy. Further-
more, we list the average number of iterations a link performs

TABLE I
MEAN LINK THROUGHPUT ERRORS AND NUMBERS OF ITERATIONS REQUIRED

FOR CONVERGENCE WITH BP AND GBP FOR TOPOLOGY SETTINGS 1

TABLE II
MEAN LINK THROUGHPUT ERRORS AND NUMBERS OF ITERATIONS REQUIRED

FOR CONVERGENCE WITH BP AND GBP FOR TOPOLOGY SETTINGS 2

before convergence. This will be used to estimate the conver-
gence time for distributed implementation in real networks.
In our experiments, we define the minimum such that

is satisfied as the number
of iterations required by BP or GBP to achieve convergence,
where is the final converged value.4 5

We generate two sets of network topologies. Specifically, for
Topology Settings 1, we randomly generate networks of dif-
ferent numbers of links while maintaining the mean degree of
links (number of neighbors per link) to around 4. For Topology
Settings 2, we fix the number of links to 100 while varying the
mean degree of links. The access intensities of all links are set
to . For each link, we calculate the error of the throughput
obtained by BP and GBP relative to the simulated throughput
obtained from the ICN simulator. The error is normalized by
the maximum link throughput in the network. For each topology
setting, we randomly generate ten different topologies and the
experimental data are averaged over the ten networks.

Tables I and II show the simulation results of BP and GBP
for the two sets of network topologies, respectively. As can be
seen, for all networks tested, the error of BP is kept to 7.2% or
below, while the error of GBP is consistently lower than 1%.

In Tables I and II, the access intensity is set to . A ques-
tion is how well these algorithms work under different . When

is large, two neighbor vertices become more tightly coupled,
and the message passing within a loop may incur more com-
putational errors. Table III shows the accuracy of BP and GBP
under different , for a 100-link network with mean vertex de-
gree of 4. As can be seen, the mean error of BP increases with .
More impressive is GBP, whose mean error is very small even
for . This shows that GBP performs well over a large
range of .

For all the scenarios, both algorithms converge within dozens
of iterations. That is, if implemented in a distributed manner in
which each link passes a message every 0.1 s (e.g., if we use
beacons for message passing in a 802.11 network [17]), both

4We use exponential averaging to smooth out the computed messages for
GBP: i.e.,� ��� � ������ ��� ������, � � � � �, where���� is
the newly computed message and� is the smoothing factor.���� is recomputed
in each iteration. For BP, we do not perform the averaging procedure because it
converges smoothly even without it.

5We define convergence has occurred when � ���� ���� �� ��� ���� �
�� for � � � for some � . According to this criteria, all the BP and GBP
algorithms in this paper converge in our simulations.
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TABLE III
MEAN LINK THROUGHPUT ERRORS AND NUMBERS OF ITERATIONS REQUIRED

FOR CONVERGENCE WITH BP AND GBP FOR NETWORKS OF DIFFERENT �

BP and GBP can obtain links throughputs within seconds in real
operation.

IV. COMPUTATION OF LINK ACCESS INTENSITIES GIVEN

TARGET LINK THROUGHPUTS

This section proposes an “inverse” belief propagation (IBP)
algorithm to compute the link access intensities required to meet
target link throughputs.

A. Motivation

In network design, an interesting problem is as follows. Given
a network contention graph and a set of target link throughputs,
how to set the link access intensities to meet the target link
throughputs.

For small networks, we can find by solving (1) and
. However, as throughput computation using (1), the

computation becomes intractable when the network is large. IBP
gives approximate solutions within a short time.

B. Definition of IBP

As described in Section III, the operation of BP is as follows.
Given the network contention graph and the access intensities
of links , BP computes the throughputs of links. That is,

.
Definition of IBP: We define as the in-

verse operation of belief propagation for , where
is the vector of target link throughputs.

C. Message Update Rules of IBP

Recall from Section III-B that the belief at vertex ,
corresponds to the link throughput, then the belief of link ,

is given in IBP.
From (6), we obtain the message update rule

(7)

and from (5), we have

(8)

The IBP algorithm iterates (7) over all vertices . Similar to BP,
in each iteration we could normalize the messages according to

, . The iteration stops when
converges or a maximum number of iterations is reached. The
link access intensities is then computed by (8).

Note that IBP, being an approximate algorithm, has compu-
tation errors that can potentially result in nonconvergence of the
algorithm. As will be demonstrated in Section VI-D, we can re-
sort to IGBP for more accurate computation. Another reason
for nonconvergence is due to the problem formulation itself and
not the fault of IBP. In the problem formulation, we require the
target to be feasible, and then seek the to achieve . If the

TABLE IV
MEAN THROUGHPUT ERRORS AND NUMBERS OF ITERATIONS REQUIRED FOR

CONVERGENCE WITH IBP AND IGBP FOR TOPOLOGY SETTINGS 1

TABLE V
MEAN THROUGHPUT ERRORS AND NUMBERS OF ITERATIONS REQUIRED FOR

CONVERGENCE WITH IBP AND IGBP FOR TOPOLOGY SETTINGS 2

given is not feasible, then no matter what algorithm we use,
there is no solution. Formulating the problem as a system utility
optimization problem as in Section V removes this difficulty.

D. Convergence of IBP

Theorem 1: If the target throughput is feasible in the sense
that for some , IBP defined by (7) and (8) is a
contraction mapping and is guaranteed to converge to .

Proof: See [16, Appendix B].

E. Experimental Evaluation

We implement IBP and IGBP using MATLAB programs. We
use the same two sets of network topologies as in Tables I and II.
The access intensity of link , , is randomly generated within
the interval . Next, we run the ICN simulator to get the
link throughputs and set them to be the target throughputs of IBP
and IGBP. Then, we find the corresponding access intensity to
meet the target link throughputs using IBP and IGBP. We then
use the ICN-simulator to get the throughputs with the access
intensities found. For each link, we calculate the error of the
throughput obtained by the ICN-simulator relative to the target
throughput. In our experiments, we define the minimum such
that is satisfied as the number of
iterations for IBP and IGBP to achieve convergence, where
is the final converged value.

Tables IV and V show the simulation results of IBP and IGBP
for Network Topology Settings 1 and 2, respectively. The error
of IBP is kept to 6.2% or below, while the error of IGBP is within
1%. As for convergence speed, both IBP and IGBP converge
within dozens of iterations. In a real network, if periodic bea-
cons of one beacon per 0.1s are used for message passing, IBP
and IGBP can output solutions within seconds for network of
up to 200 links.

V. BP-ADAPTIVE CSMA (BP-ACSMA)

This section investigates solving the network utility optimiza-
tion problem in CSMA networks using BP.

A. Motivation and Problem Formulation

In Section IV, the target link throughputs are given, and the
corresponding link access intensities are computed. A problem
is that in general we do not know whether the target link
throughputs are feasible—computation of the feasible region is
itself a tough problem for large networks.
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A way to circumvent this problem is to focus on optimizing a
system utility instead, where is the utility
of link . The algorithm then iterates within the feasible region
to identify the that optimizes the utility, without finding the
whole feasible region explicitly. This is the basic principle be-
hind the ACSMA algorithm proposed in [6]. In the following,
we briefly review the background leading to ACSMA. Then, in
Section V-C, we introduce the alternative of using BP to solve
the problem.

Recall that the feasible states of ICN are the independent sets
of the contention graph. Define an indicator function such
that if link is transmitting in state and
otherwise. Let be the probability of state (i.e., fraction of
airtime dedicated to state ), then the throughput of link can
be expressed as . Furthermore, let denote the
input rate of link . Let and denote the vectors consisting of

for all , and for all , respectively. Consider the following
utility optimization problem:

s.t.

(9)

As explained in [6], when the system is in a state (i.e.,
) but link has no packet in its queue, link will transmit a

dummy packet. This accounts for the inequality
(rather than equality).

The optimization problem as formulated in (9) has two prob-
lems. First, it is a difficult combinatorial optimization problem.
Also, it is not clear how to implement a distributed algorithm
to solve it. Second, even if a solution could be found, to re-
alize it using CSMA, the found would still have to be mapped
to . That is, must be equal to the stationary probability

for CSMA networks.
To circumvent the above difficulties, [6] formulated an alter-

native optimization problem as follows:

s.t.

(10)

Compared to (9), the objective function in (10) has an extra
entropy term . When is large, (10) asymptot-
ically approaches (9). As shown below, the found by (10) is
CSMA realizable. Indeed, turns out to be the dual
variable to the constraint .

Let us define dual variable for the constraint
, without assuming for the time being. A

partial Lagrangian of problem (10) is

(11)

Given and , the optimal to (10) can be shown to be

(12)

We see that (12) is just the stationary distribution of CSMA
networks with .

The optimal is given by

(13)

The optimal is given by

(14)

Combining (12)–(14), we find that the optimal solution to (10)
is given by a set of and that satisfy

(15)

In Section V-B, we briefly review how [6] solves the opti-
mization problem using a distributed adaptive CSMA algorithm.
We present an alternative method using the BP framework in
Section V-C.

B. ACSMA Proposed in [6]

The joint scheduling and congestion control algorithm
(ACSMA) proposed in [6] looks for the optimal solution to
(10) by steepest ascent of . According to (14),

output rate of link input rate of link .
The queue size of link is a smoothed measure of the difference
in the output rate and input rate. Thus, in each iteration, link
adjusts its such that is proportional to its queue
length. If the input rate of the queue is larger than the output
rate, the queue builds up, leading to an increase in , and vice
versa. Note that controls the output rate of link . For the
input rate , link adjusts to satisfy
in (13) based on the newly computed . Before the next
iterative update, link waits for some time to examine whether
the load can be supported by the network under the current
(by examining its queue size). The iterations continue until
the overall network finds a set of access intensities that can
support the loads (with stable queue sizes). At that point,

.
ACSMA does not explicitly “compute” the link throughputs

using (12). Rather, it makes use of actual data packets to probe
the network and “measure” the link throughputs. To smooth out
the measurement due to temporal throughput fluctuations, long
smoothing intervals between successive iterations may be re-
quired. Reference [8] shows that CSMA networks are suscep-
tible to the so-called temporal starvation, where links may un-
dergo long intervals in which they receive near zero through-
puts even through their equilibrium throughputs are acceptable.
For networks with temporal starvation (e.g., Cayley tree net-
works [19]), long smoothing intervals are needed in ACSMA.

C. BP-ACSMA

The optimal network utility in (10) is achieved when (15) is
satisfied. BP can be applied to ensure that.
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In BP-ACSMA, the message update rule is

(16)

In each iteration, based on the received messages, vertex
computes belief according to

(17)

It then solves for from (15) by setting .
Based on the new , vertex updates messages

according to (16) and broadcasts the messages to its
neighbors.

In essence, BP replaces the network probing and throughput
measurement in ACSMA by computation.

D. Experimental Evaluation

We implement BP-ACSMA, GBP-ACSMA, and ACSMA
using MATLAB programs (details of GBP-ACSMA will be
presented in Section VI-D). We consider the proportional
fairness utility, , and set the weighting
factor to 1. For BP-ACSMA and GBP-ACSMA, the outputs
are the converged link access intensities, . To evaluate the
performance, we use the ICN simulator to get the throughputs
of networks with the found, and then obtain the network
utility achieved from the throughputs.

For easy comparison between our algorithms and ACSMA,
we use in our convergence test although the pa-
rameters being adjusted in our algorithms are , . Let
be the value of in iteration . We define the number of itera-
tions required for convergence in BP-ACSMA (GBP-ACSMA)
as the minimum such that ,
where is the final converged value.

In ACSMA, the parameters adjusted in iteration are
and . If ACSMA converges, then and will
asymptotically approach the target and as increases. We
define the minimum such that
is satisfied as the number of iterations for ACSMA to achieve
convergence. Note that here we use a looser convergence test for
ACSMA because, by nature, some fluctuations are unavoidable
in ACSMA even after convergence because of its measurement
approach. In our simulation, the update interval of ACSMA is
set to 150 DATA packet times to guarantee convergence: We
find that if the update interval is set to 125 DATA packet times,
ACSMA does not converge in some networks tested.6

In the first set of experiments, we randomly generate net-
works with different numbers of links. The mean degree of links
is around 4. In each simulation run, we gather the statistics
of two metrics: 1) normalized total system throughput

; 2) system utility . Table VI shows
the achieved throughputs and network utilities of BP-ACSMA,
GBP-ACSMA, and ACSMA. As shown, BP-ACSMA has ac-
ceptable performance in terms of both throughputs and net-
work utilities; and GBP-ACSMA has comparable performance
to ACSMA. As for speed, BP-ACSMA and GBP-ACSMA

6This brings up another issue with ACSMA. That is, we do not know how
to set the update interval � in an optimal manner beforehand, and we need
to run the algorithm to determine the minimum � required for each network.
BP-ACSMA and GBP-CSMA, however, do not have this issue because the up-
date interval is not related to measurement smoothing time.

TABLE VI
ACHIEVED AGGREGATE THROUGHPUTS, UTILITIES, AND NUMBER

OF ITERATIONS REQUIRED FOR CONVERGENCE IN BP-ACSMA,
GBP-ACSMA, AND ACSMA FOR NETWORKS IN WHICH

EACH VERTEX HAS ON AVERAGE FOUR NEIGHBORS

TABLE VII
ACHIEVED AGGREGATE THROUGHPUTS, UTILITIES, AND NUMBER

OF ITERATIONS REQUIRED FOR CONVERGENCE IN BP-ACSMA,
GBP-ACSMA AND ACSMA FOR NETWORKS OF 100 LINKS

output solutions after dozens of iterations, while ACSMA often
requires hundreds of iterations.

In the second set of experiments, we randomly generate net-
works of 100 links with varying mean vertex degrees. Table VII
compares the three algorithms. As the network becomes denser,
more loops appear in the contention graph, resulting in higher
computation error in BP-ACSMA. As shown in Table VII,
BP-ACSMA loses accuracy when the mean vertex degree is
set to 6. GBP-ACSMA continues to work well since it has
removed loops in message passing. Table VII also shows
that BP-ACSMA and GBP-ACSMA achieve higher aggregate
throughputs than ACSMA does with some utility loss. As for
convergence speed, BP-ACSMA and GBP-ACSMA are much
faster than ACSMA.

E. Comparison of BP-ACSMA and GBP-ACSMA to ACSMA

Simulations in Section V-D show that both BP-ACSMA and
GBP-ACSMA converge within dozens of iterations for a net-
work of 100 links. ACSMA converges only after hundreds of
iterations. For comparison, let us map the number of iterations
to time needed for convergence in real network operation.

For BP-ACSMA and GBP-ACSMA, beacons could be used
for message passing. In 802.11 networks, typically a beacon
is broadcast every 0.1 s. For BP-ACSMA, from the results in
Tables VI and VII, convergence is achieved within 11 itera-
tions for all the scenarios we tested. Using beacons for mes-
sage passing, it only needs s to output solu-
tions for networks of up to 100 links. For GBP-ASMA, con-
vergence is achieved within 64 iterations for all the scenarios
tested, corresponding to a convergence time of within 6.4 s.
The convergence speed of both algorithms can be even faster
if the messages are piggybacked on data packets rather than
being carried on beacons. By contrast, ACSMA requires

ms s for convergence, assuming the DATA packet du-
ration is 1 ms—recall that we experimentally found that we need
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Fig. 2. Three-order Cayley tree network.

Fig. 3. Evolution of � and � in a ���Cayley tree network for ACSMA of [6]
with � � ��� s. Access intensities of other links exhibit similar fluctuations.

150 DATA packet times between successive measurements for
convergence in ACSMA.

For networks that exhibit temporal starvation [8], even more
time is needed for ACSMA within each iteration to smooth
out the measurement. An example of a network that exhibits
temporal starvation is Cayley tree network [19]. To illustrate
our point, we perform simulations on a three-order four-layer
Cayley tree. As shown in Fig. 2, each link in the Cayley tree
has three neighbors. Emanating from link 1, all the links are ar-
ranged in shells around vertex 1. In our example, there are four
such shells. We run ACSMA using the same parameters as in
[6] except that the update interval is set to 100 ms (we as-
sume that DATA packet duration of 1 ms) and . Fig. 3
plots , versus the iteration index, where
link 2 is a neighbor of link 1. As can be seen, ACSMA cannot
converge. This means that the update interval ms is not
long enough to accurately measure the link throughputs. Indeed,
we find that ACSMA converges according to our convergence
test only when is set to a large
value of 5700 ms. The number of iterations needed is 249. This
means that ACSMA needs at least ms min
to converge.

Large update interval is required to avoid oscillations of
and in the Cayley network because the temporal

throughputs of links exhibit drastic fluctuations over time.
Take link 1 as an example. As plotted in Fig. 4, its normalized
temporal throughput, averaged over a window of ms,
alternates between 0 and 1 over time. To exactly measure the
throughputs, each link needs to average its measured throughput
over several 0–1 cycles, say 8–10 s. Thousands of DATA packet
durations are needed in each iteration for accurate estimate of
link throughputs under current network settings.

BP-ACSMA and GBP-ACSMA, however, do not require this
real-time measurement and hence will not be affected by this

Fig. 4. Normalized throughputs of link 1 in a ��� Cayley tree measured over
successive 0.1-s intervals when ACSMA is implemented. Throughputs of other
links exhibit similar fluctuations.

temporal starvation phenomenon.7 Indeed, for tree networks,
distributed BP-ACSMA yields exact solutions with the number
of iterations equal to the diameter of the graph [1]. The diameter
of a Cayley tree as in Fig. 2 is eight [19]. That is, distributed
BP-ACSMA outputs exact solutions with eight iterations, cor-
responding to 0.8 s in real network operation, assuming beacons
are used for message passing. Compared to ACSMA that con-
verges after 23.66 min, BP-ACSMA is a lot faster.

Philosophical Interpretation of Convergence Rates:
BP-ACSMA and GBP-ACSMA require one-hop message
passing, while ACSMA does not require message passing.
One may ponder why BP-ACSMA and GBP-ACSMA can
converge faster than ACSMA. A way to look at the problem is
as follows. In order for a link to adjust its access intensity to
achieve its “fair share” of throughput under the utility objec-
tive, it somehow has to acquire information about the network
topology because “fair share” is a quantity that depends on the
topology. To obtain the topology information that has an impact
on the fair share, in a distributed algorithm, the links somehow
have to communicate with each other.

In BP-ACSMA and GBP-ACSMA, the communication is in
the form of “explicit” message passing. In ACSMA, however,
the communication is achieved via “implicit” messages, in the
following sense. In ACSMA, each time a link transmits a reg-
ular data packet, it is actually conveying some information to the
neighbor links. In particular, data packets transmitted by link
slow down the clearing of queues in neighbor links, who make
use of their queue occupancies to adjust their access intensities.
Because of the need for smoothing and the fact that these data
packets are “indirect” messages, many more data packets than
explicit messages are needed in order to convey the same infor-
mation in ACSMA. This slows down the convergence rate of
ACSMA.

The main potential drawback of BP-ACSMA and
GBP-ACSMA is accuracy since the throughput dependen-
cies on the access intensities are approximated. More precisely,
both BP-ACSMA and GBP-ACSMA are only exact in tree
topologies (e.g., Cayley tree networks) and may have errors in
loopy graphs. The computation error may become unacceptable
when the access intensities are extremely large (e.g., 1 )

7We emphasize that we do not claim that BP-ACSMA and GBP-ACSMA
can eliminate the temporal starvation phenomenon. Our point is that because
BP-ACSMA and GBP-ACSMA obtain the equilibrium throughputs through
computation, their convergence will not be slowed down by measurement.
All the algorithms studied in this paper focus on controlling the equilibrium
throughputs of links. However, given an acceptable equilibrium throughput, the
temporal throughput of a link can still alternate between 0 and 1 in cycles of
long durations. The reader is referred to [8] for a study on how to characterize
temporal starvation and the possible remedies for it.
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or the network is dense with large vertex degrees. In practice,
we are unlikely to adopt very large access intensities because
of implementation concerns such as finite size of time-slot (see
of [22, Section III-B], where it was argued that access intensity
cannot go beyond 530). Also, excessive access intensity is
not desirable because the network may become susceptible to
temporal starvation [8]. As for dense networks, we note that
GBP-ACSMA can still achieve reasonably accurate results.
Section VI details the theory behind GBP and how our specific
implementation of GBP for CSMA networks attempts to re-
move small loops in the message passing construct; small loops
are particularly detrimental to accuracy, as we have argued in
Section III-F.

VI. GENERALIZED BELIEF PROPAGATION AND ITS

APPLICATIONS IN CSMA NETWORKS

In BP, all messages are from one vertex to another vertex. To
reduce the error effects of loops, GBP allows messages to be
passed from a group of vertices to another group. These groups
of vertices are called regions, and the loops among the vertices in
a region are subsumed into a region. The belief of a region corre-
sponds to the joint probability of the states of the vertices within
the region, and the intricate dependencies among the states of
these vertices due to loops among them are captured by the joint
probability. A region graph is constructed for message passing
among the regions to capture the interdependencies among the
regions.

A. Region Graph

The first step of GBP is to generate a region graph . In
this paper, we use an algorithm similar to the cluster varia-
tion method introduced by Kikuchi and further developed in
the physics literature [23]. GBP can be applied to various infer-
ence-making problems, and its general framework leaves open
the issue of how to form regions out of the vertices. A contribu-
tion of this paper is to show that a “maximal clique” method of
forming regions: 1) yields accurate results; and 2) is amenable
to distributed implementation in CSMA networks.

A region is a subgraph of the original con-
tention graph in which , and
are edges between the vertices in . Regions are divided into
different hierarchical levels. Each region belongs to one of the
level. Fig. 5 gives an example demonstrating the construction of
a region graph using the cluster variation method.

An important step is the forming of the set of regions at
level 0, denoted by . Once is formed, the regions at other
levels are constructed based on . That is, the definitions of
regions in other levels follow from .

Every vertex and every edge in the original
graph must be included into at least one region

[24]. A vertex can belong to more than one region
in . However, no region could be a subregion of
another region : that is, for any two regions ,

.
Within the above specification, there are many ways of

forming . Different choices of correspond to different
implementations of GBP. Generally, there is a tradeoff between
complexity and accuracy. Higher accuracy can be obtained if

Fig. 5. Example of construction of a region graph. (a) Contention graph. (b)
Region graph of (a).

the regions in are large, but the computation complexity
will also be higher.

As discussed in Section III-F, when BP messages are passed
around a small loop, computation errors will be incurred. In
GBP, we try to include loops in the original contention graph
into a region in to negate their effects. In our GBP for CSMA
networks, we generate by making each maximal clique in
a region in .8 This ensures that each vertex and each edge in

are included into at least one region. The definition of
based on maximal cliques are motivated by two reasons. First,
error-inducing small loops in BP consisting of only three ver-
tices are guaranteed to be subsumed into a region. Although
larger loops may not be subsumed into a region, the intuition
is that they induce smaller errors anyway. Simulation results in
the preceding sections have borne out our method of forming
regions in under various contention graphs and parameter
settings. Second, as will be detailed later, maximal-clique
turns out to be a key that enables a distributed implementation
of GBP in CSMA networks because it guarantees that the ver-
tices of a region are one-hop neighbors of each other.

For notational simplicity, in the following, we sometimes
write in terms of its vertices without listing its edges. In
Fig. 5, the maximal cliques are , , , ,

, , , and , all of which are included
in on the top row of Fig. 5(b).

After the construction of , we then construct the set of re-
gions at level 1, , from the intersections of the regions in .
We discard from any intersection region that is a strict sub-
region of another intersection region. Specifically, to construct

, we first form the set
. We then discard from any region

where . In Fig. 5, for example, con-
sists of , , , , and . Note that although

8It is important to note that the identification of maximal cliques here is not
NP-hard if the vertex degree is limited. In practical CSMA wireless networks,
the degree of a vertex does not grow with the network size, thanks to geograph-
ical constraints. Typically, a vertex has at most 5–6 neighbors regardless of the
number of vertices in the graph. Let� be the maximum degree of vertices in the
contention graph and� be the number of links in the network. For each vertex
the complexity of finding maximal cliques containing it is of order ��� �.
Hence, the complexity of finding all the maximal cliques is of order ���� �,
which increases linearly with� . For distributed implementation, the computa-
tion-time complexity is of order ��� �.
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is the intersection of and , is not included
in because it is a strict subregion of and .

Similarly, we construct the set of regions from the inter-
sections of the regions in . In addition to discarding
intersection regions that are subregions of other intersection re-
gions in , we also discard intersection regions that have al-
ready appeared in .

General Procedure for Constructing and Edges to It:
In general, to construct , we first form the set

We then discard from any region where for
some ; and any region where for some

(i.e., also discard any region in that already appears
at an upper level). We stop forming new regions at the next level
when no more new intersection regions can be identified.

For each region , we draw a directed edge from each of
its super-regions to it, except for those regions that are super-
regions of other super-regions of region . For example, in
Fig. 5 there is no direct edge from to since re-
gion is the super-region of region , which is also
a super-region of .

Observation 1: Since regions below are formed from the
intersections of regions in , and the regions in are cliques,
all regions in the overall regional graph must be cliques.

In the resulting region graph , an edge connects a “parent
region” and a “child region” . If there is a directed path
from region to region , we say that is an ancestor of

, and is a descendant of . We denote the region graph by
, where is the set of regions and is the set of

edges. Note that in this paper, to avoid confusion, the bold fonts
and are used to refer to the “regions” and “edges between

regions,” and and refer to the “vertices” and “edges” in the
original contention graph.

B. Belief Computation and Message-Update Rules

This paper adopts the Parent-to-Child algorithm [24] for
message updates in GBP. In this algorithm, messages are
passed from parent regions to their child regions only. Let

, , , be the state of a
region . In GBP, the belief of , , is to be estimated.

In GBP, the “intrinsic” belief of is given by
. This would be proportional

to the joint probability of the states of the vertices in if there
were no other vertices in the overall network (i.e., if were
the overall network itself). In general, is found to be
the product of the intrinsic belief and external messages from
other regions, as explained in the next paragraph.

Let be the subgraph consisting of a region and
all its descendants. In GBP, the update equation for
has to incorporate all “external messages” passed to the re-
gions in , not just those to . In Fig. 5, for example,

, and the following external mes-
sages are passed into : , ,

, , (note that
and are not external messages). In general, let

denote the parents of a region . The belief at
is the product of its intrinsic belief and external messages:

(18)

Note that in the above, is a particular state of , and the state
of , , is induced from .

The message-update rules are obtained by requiring con-
sistency of the beliefs between parent and child regions. In
Fig. 5(b), let us focus on the region and its child .
The belief at region is given by

and the belief at region is given by

Using the marginalization constraint
, we obtain a relation between messages

from which we obtain

(19)

Note that on the right-hand side (RHS) of (19), with reference
to Fig. 5, only those external messages flowing into
that are not also external messages flowing into are re-
tained in the numerator, and only the “internal” messages from

to are retained in the denominator.
Similar relations can be obtained between each pair of parent
and child regions.

In general, the belief of a parent region can be written as

(20)

The marginalization constraint for a child region with respect
to the specific parent is

(21)

Combining (18), (20), and (21), and canceling common items
on the left-hand side (LHS) and RHS of (21), the message from
a parent to a child can be written as (22), shown at the
bottom of the next page.
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Note that the term

in the numerator consists of the “external”
messages into but not ; the term

in the
denominator consists of the “internal” messages from
to . Although not necessary mathematically, in each
update, we also impose the normalization constraint

to contain the numerical errors.

C. Distributed GBP

To implement GBP in a distributed manner, for each message
from a parent region to a child region , , we need
to identify a particular vertex to be responsible for its update
and dissemination. We will refer to the responsible vertex as the
message agent.

We propose to let a vertex that is in both and , ,
to be the message agent for . In general, could
contain more than one vertex, in which case we elect the vertex
with the lowest ID to be the message agent. As to what to use for
ID, we note that each node in the CSMA network usually has a
unique ID (e.g., MAC address). Each vertex is a link consisting
of a transmitter and a receiver. We can simply choose the trans-
mitter ID to be the link ID. If we have an infrastructure network,
the AP ID can be the link ID.

Features for Correct Operation of Distributed GBP: The
following lists three features of our distributed GBP that enable
its correct operation.

Feature 1: Each vertex could collect enough information to
construct a local region graph for the purpose of distributed

computation of beliefs and messages. The local region graph

is a subgraph of the complete region graph . In particular,

is consistent with in that each region appearing in also

appears in , and each edge appearing in also appears in .
Feature 2: Each vertex could: i) identify all regions to

which it belongs from and randomly select one of them,
say , for its throughput computation; ii) collect the informa-
tion needed to compute the region belief according to
(18). Then, by taking marginal probability, it can compute its
throughput: .

Feature 3: Each vertex could: i) identify the messages for
which it is the message agent from ; and ii) for each such
message , collect the information needed to update

according to (22).
Next, we describe the part of our distributed GBP that en-

ables Feature 1: i.e., the construction of a consistent local region

graph . In our implementation, a vertex would first construct
a local contention graph , which it constructs based on
the broadcast information from its neighbor vertices. From ,

vertex would then construct .
Assumption 1: We assume that a vertex can hear the broad-

casts of all its neighbors in the contention graph . The
reader is referred to [16, Section III-D] on how to realize this
assumption in real implementation.

Broadcast of Vertices to Enable Construction of :
Define . Each vertex in the network broad-
casts three kinds of information in its neighborhood: 1) its
link ID ; 2) its access intensity ; 3) a local contention
graph, denoted by , consisting of all the vertices in
and the edges between them (i.e., all edges such that
, ). Conceptually, this information is embodied in

a 3-tuple . For ease of exposition, we assume

and the broadcast information is a 3-tuple .
Strictly speaking, the intensity is not needed for the con-
struction of local contention graphs and will be used only for
the computations of beliefs and messages in Features 2 and 3.
Thus, in the following, we focus on the 2-tuple that
can be extracted from the 3-tuple.

Construction of Local Contention Graph : Consider a
vertex . Each neighbor broadcasts the 2-tuple .
Vertex constructs a local region graph based on
from all .

Initially and is not accurate. However, at
least all could be identified by vertex after one
round of broadcast by the neighbors. In the next round,
each vertex , based on what it hears from its own
neighbors in the last round, can deduce the set of edges

. Vertex will then broadcast with
. Specifically, will

have the correct vertices, but only edges between and its
neighbors appear; but not those between neighbors. After one
more round, however, this will be fixed, and ,

where are the edges in the
complete contention graph . Thus, three rounds of
broadcast will make sure the broadcast 2-tuple is correct.

Then, vertex constructs a local contention graph consisting
of the union of its own and the in its neighborhood:

.

Property of : contains all vertices within two hops of
vertex . From , vertex can identify all the maximal cliques
to which it belongs (within the overall contention graph ), as

(22)
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Fig. 6. Example of construction of a local region graph. (a) Local contention
graph. (b) Local region graph.

well as all the maximal cliques to which each of its neighbors be-
longs. That is, all maximal cliques containing at least one vertex
in can be identified from .

Construction of Local Region Graph : Based on ,

vertex then constructs a local region graph using the cluster
variation method described in Section VI-A, with a small modi-
fication, as described in the next paragraph. As in Section VI-A,
the first step is to form the set of regions at level 0, denoted by

, from the maximal cliques in that contains at least one
vertex in (note that the Property of above guarantees

that can be generated correctly from ). After the con-
struction of , we then perform the same procedure as in
Section VI-A to construct the regions in lower levels.

The modification is that we will discard all regions that do
not contain any vertex in (i.e., ). The dis-
carded regions will have no bearing on the local computation to
be performed to realize Features 2 and 3. In Fig. 5, for example,
let us look at vertex 1. We draw the local contention graph
in Fig. 6(a). By forming maximal cliques, includes regions

, , and . At level 1, the intersections
of regions in are generated: , , , and . We
discard region from level 1 since the sole vertex it contains,
vertex 4, is two hops away from vertex 1 and not in .

As in Section VI-A, for each remaining region , we draw
a directed edge from each of its super-regions to it, except for
those regions that are super-regions of a super-region of re-
gion . We denote the local region graph of vertex by

. Note that here are regions and are the
directed edges between regions.

Consistency of Local Region Graph: We restate Feature 1
more rigorously here.

Feature 1: The local region graph constructed from is

consistent with the complete region graph in that each region
in is also a region in , and each edge in is also an edge

in . That is: 1) , ; 2) , .
The rigorous proof of Feature 1 is given in [16, Appendix C].

The outline of the proof is as follows. We first show that each
region in must also be a region in . We then show that,
in general, each region appearing in must also appear in ,

and each edge between two regions in must also be an edge

in .
Feature 1 here means there are no extraneous regions or ex-

traneous edges in . Feature 1 below is sort of a converse to

Feature 1. It states that the portion of the region graph needed
for the local computations of beliefs and messages by vertex

is exactly duplicated in . That is, contains enough infor-
mation to enable Features 2 and 3.

Feature 1 : Any region in that contains at least one
vertex in must also be a region in . Furthermore,
consider two regions and , both of which have at least one
vertex in . If there is an edge between and in , there

is also an edge between and in .
We refer interested readers to [16, Appendix C] for a rigorous

proof of Feature 1 . Features 1 and 1 above are critical to en-
abling Features 2 and 3 because Features 2 and 3 require the
knowledge of all the regions in that have at least one vertex
in , as well as the edges between them (this can be seen in
the proofs of Features 2 and 3).

Based on , we proceed to implement the other procedures
of our distributed GBP that enable Features 2 and 3.

Self-Identification of Message Agents, Message Computa-
tion, and Message Broadcast: Recall that in GBP a message
is passed from a parent region to a child region . For each
parent–child pair in , there is a message between

them. Based on the local region graph , vertex first identi-
fies all the messages satisfying . For each such mes-
sage, vertex checks to see if it is the vertex with the lowest ID
in ; if so, it will elect itself to be the message agent for

. This procedure enables Feature 3(i).
Vertex will compute message for which it is

responsible using (22), and then broadcast the message to its
neighbors. Note from the RHS of(22) that, in general, other mes-
sages are required for the computation of . Thus,
vertex must be able to collect these messages in our distributed
implementation. The key observation is that in our maximal-
clique implementation, the message agents for these mes-
sages must be either vertex itself or one-hop neighbors of
vertex . The reader is referred to [16, Appendix C] for a de-
tailed proof for this property.

Belief Computation by Vertices: Each vertex can choose
a region to which it belongs from and computes the be-
liefs according to (18). It then obtains its throughput by
taking marginal probability . Essen-
tially, as with computation of messages, our proof of Feature 2
in [16, Appendix C] shows that vertex will be able to hear
the broadcast of the messages required in (18) by their message
agents.

Periodic Update to Track Dynamic Network Topology: In
practice, the network contention graph may change dynamically
with new nodes joining and existing nodes leaving the network.
Even among the existing nodes, they may become idle when
their users are not actively using the network. To track the vari-
ations of the network topology, the local contention graph
needs to be refreshed periodically, as well as the local region
graph .

The overall pseudocode of distributed GBP can be found in
[16, Section VI-C].

D. IGBP and GBP-ACSMA

Analogous to IBP and BP-ACSMA, we can adapt GBP for
the access intensities computation to meet the target throughput
distribution and the resource allocation problem as in (10),



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

respectively. We refer the interested readers to [16] for more
details.

VII. CONCLUSION

This paper is a first attempt to apply belief propagation to the
analysis and design of CSMA wireless networks. In particular,
we investigate three applications of belief propagation and gen-
eralized belief propagation: 1) computation of link throughputs
given link access intensities; 2) computation of link access in-
tensities required to meet target link throughputs; and 3) opti-
mization of network utility.

We show how the BP and GBP algorithms for all three ap-
plications can be implemented in a distributed manner, making
them useful in practical network operation. BP works well in
terms of speed, and it yields exact results in networks with tree
contention graphs. For loopy contention graphs, GBP improves
accuracy at the cost of longer but still manageable convergence
time.

With regard to 1) and 2), we use BP to solve two NP-hard
problems in CSMA networks. In loopy graphs, BP yields solu-
tions with accuracy higher than 90% under various contention-
graph and access-intensity settings. GBP can cap the mean error
to below 1% for networks of up to 200 links within dozens of
iterations.

Among the three applications, of particular interest are dis-
tributed and adaptive algorithms to 3). A solution, ACSMA was
first proposed in [6], in which no message passing is needed.
The operation in ACSMA is based on “probe and measure.”
Specifically, before a link adjusts its access intensity in an itera-
tion, a period of smoothing time is needed to measure the differ-
ence of its input and output traffic in the last iteration. As shown
in this paper, the required smoothing time can be quite exces-
sive in networks that exhibit temporal starvation [8], resulting in
very slow convergence. BP-ACSMA and GBP-ACSMA do not
have this problem because they are computation-based rather
than measurement-based. One-hop message passing, however,
is required.

BP has found empirical success in numerous applications
(e.g., decoding of LDPC and turbo codes). Typically, the con-
vergence of the BP algorithms in these applications is nontrivial
to prove (except for tree graphs). Such is the case with belief
propagation in CSMA networks as well. For all scenarios tested,
our experiments indicate that both BP and GBP algorithms can
converge quickly with accurate computed results. Convergence
proofs, however, await future work.
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