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N log N Dual Shuffle-Exchange Network with
Error-Correcting Routing
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Abstract— This paper describes a dual shuffle-exchange
switching network (DSN) that makes use of the principle
of error-correcting routing. For motivation, parallels are
drawn between error-correcting routing in switching and
error-correcting coding in transmission. Based on a novel
error-correcting and self-routing algorithm, we show by anal-
ysis and simulation that the DSN can achieve the Shan-
non’s lower bound Nlog N on switch complexity while satis-
fying four desirable criteria: 1) self-routing property; 2) no
queueing of packets at the inputs or inside the switch; 3)
arbitrarily small packet-loss probability; 4) close-to-100%
throughput. Different implementations of the basic DSN
concept and their trade-offs are discussed.

I. INTRODUCTION

At the fundamental level, a communication system consists
of two complementary functions: transmission and switch-
ing. Transmission ensures that information is conveyed
reliably from one location to another over a point-to-point
channel, and switching allows information to be sent to
different destinations at different times. To motivate the
approach of our switch design, we wish to establish some
parallels between the design philosophies of transmission
and switching systems.

In the process of transmitting a message, noises are added
to the message which are not intended by the sender. Shan-
non’s work on Information Theory [1] establishes the in-
terrelationship between the noise characteristics and the
channel capacity. A major insight drawn from this theory
is that instead of designing a channel to have extremely
small bit-error rate, a more intelligent approach is to in-
troduce error-correcting bits in addition to information bits
in the message so that bit errors can be corrected at the re-
ceiver end. In this way, one avoids the technical difficulty
of an error-free channel while still being able to achieve
reliable transmission at a high rate.

In packet switching, the messages to be switched are
divided into information blocks called paékets. In a self-
routing switch, the output address of a packet is embedded
in the header of the packet. Typically, the switch consists
of an interconnection of switch nodes [2]. Based on the
header information, the switch nodes execute a distributed
algorithm to route packets to ‘their destinations without
any external intervention. In such a system, packets may
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contend for the access of the same internal link or same
output port. Whereas the design of a transmission system
deals with ways to handle bit errors, the main design is-
sue of a self-routing packet switch is how to handle packet
contention. Routing errors are said to have occurred when
packets are either dropped or delivered to the wrong des-
tinations due to contention. Three switch-design philoso-
phies for dealing with packet contention and routing errors
are described below.

In Reference 3], we proposed a theoretical foundation for
evaluation and comparison of a broad spectrum of packet
switches within the framework of performance and com-
plexity studies. We will follow the approach in this paper.
Two of the more well-known switches proposed recently are
the Batcher-banyan switch [4]-[6] and the Knockout switch
[7]. The Batcher-banyan switch in [5] deals with packet
contention by switching only a subset of input packets with
non-conflicting output destinations in any given switch cy-
cle. The packets that have been denied output access are
buffered or queued at the inputs, so that they may try to
reach their outputs again in the next switch cycle. For this
reason, the Batcher-banyan switch has been classified as a
waiting system in [3]. A packet is guaranteed to reach the
correct destination after some waiting period. This strat-
egy is analogous to operating a transmission channel to
avold errors totally, say, by using some ARQ (automatic
repeat request) scheme [8]. The throughput of the input-
queued Batcher-banyan switch is limited to below 60%
[6],[9],[10], and the complexity is of order N(log N)?, which
is above the Shannon’s lower bound N log N on switch com-
plexity [11].

Instead of solving the contention problem by packet wait-
ing, the Knockout switch [9] allows up to L input packets
to access any output simultaneously. If more than L pack-
ets arrive for the same output, excess packets are simply
dropped, giving rise to the possibility of routing errors.
However, the packet-loss probability can be made arbitrar-
ily small by large enough L, which can be achieved by
providing sufficient paths between inputs and outputs. Es-
sentially, there is a trade-off between packet-loss probabil-
ity and switch complexity [3]. This is the principle behind
many switches that are classified as loss systems [3]. There
is no mechanism for correcting routing errors since packets
cannot be recovered once they are dropped. This strat-
egy can be compared to designing a transmission channel
to have very small bit-error rate. In transmission, as in-
dicated by Information Theory, this may not be the most
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intelligent approach. In self-routing switching, no design
that follows this approach is known to achieve the Shan-
non’s lower bound N log N on complexity; to date, the low-
est order of complexity is achieved by the dilated banyan
network, and it is of order N log N(loglog N [3].

Within the class of loss systems, an alternative approach
is to employ deflection routing. As a reference, both the
tandem-banyan network [12] and the shuffle-exchange [see
Section 2] network are based on deflection routing. In these
systems, a packet that has lost contention in a switch node
inside the overall switch is simply deflected to a wrong
route temporarily. Redundancy is built into the routing
process and the switch design so that the deflected packet
can be routed in later switching stages in a way that cor-
rects for the earlier mistake. This is analogous to using
error-correcting codes to correct for bit errors in transmis-
sion channels.

Without the proper switch topology and routing algo-
rithm that minimize the redundancy, the use of deflection
routing in itself would not achieve the N log N lower bound
switch complexity. For instance, the tandem-banyan net-
work and the shuffle exchange network are both of or-
der N(logN)? [3]. This paper proposes a dual shuffle-
exchange network with an adaptive distributed algorithm
that achieves the Nlog N complexity. This network sat-
isfies four desirable criteria for packet switches: 1) self-
routing property; 2) no queueing of packets at the inputs
or inside the switch; 3) arbitrarily small packet-loss prob-
ability; 4) close-to-100% throughput.

In the dual shuffle-exchange network, whenever a packet
is deflected, two extra routing bits are attached to its exist-
ing routing tag in the header. The two routing bits indicate
how the packet is to be routed later to correct for the de-
flection error. Thus, just as in transmission where we have
error-correcting bits to correct transmission errors, we have
error-correcting bits here to correct routing errors. The
parallel between the basic idea of error-correcting routing
and error-correcting coding is then clear. There is a signif-
icant but subtle difference, however: in switching, we know
where and when a deflection occurs, whereas in transmis-
sion, the error bits are not known, otherwise correcting
the error bits would be trivial. To better make use of this
fact in switching, error-correcting bits for routing are in-
troduced dynamically only when deflection occurs.

For background information, it is worth noting that the
dual shuffie-exchange network is closely related to the cross-
back network in [13]. The crossback network is a shuffle-
exchange network with bidirectional links. The evacuation
time is defined to be the first time at which the expected
link utilization in the system is less than 1/2N, assum-

ing no new packets are introduced after an initial set of

packets are injected into the nodes. It was mentioned in
[13] that the evacuation time of the crossback network can
be shown to be of order log N, although the actual proof
was not given. This provides a clue that a unidirectional
switching network with Nlog N complexity for any given
packet-loss probability is achievable, and a simple “trans-
formation” of the crossback network indeed leads to the

construction of the dual shuffie-exchange network. Refer-
ence [13], however, concludes that the crossback network is
inferior to other networks in practice although its evacua-
tion time is asymptotically better, because of its high node
complexity. On the other hand, the dual shuffle-exchange
network is not only theoretically optimal, but also prac-
tically superior to many other switch designs, since the
following important implementation issues are considered
and examined in our construction:

1. An explicit self-routing algorithm and its variants are
provided. These routing algorithms show that error-
correcting routing can be implemented in a straight-
forward and distributed manner.

2. The high complexity of switch nodes in the crossback
network, 25 crosspoints per node, can be reduced sub-
stantially. Specifically, we demonstrate that it is un-
necessary to provide a nonblocking crossbar switch at
each node, and that a banyan network with 4 cross-
points is sufficient.

3. Several design alternatives for the overall dual shuffle-
exchange network are presented here. We show how
the dual shuffle-exchange network can be configured as
a 2N x 2N network in practice to minimize complexity.

4. We observe that packets may experience routing dead-
locks in the dual shufle-exchange network. The same
situation may also occur in the crossback network. We
suggest several simple routing strategies to make the
network deadlock-free.

To explain the details of the dual shuffle-exchange net-
work, the remainder of this paper is organized as follows.
Section II describes the shuffle-exchange network with de-
flection routing. Its deficiencies are pointed out and are
used to motivate the design of the dual-shuffle exchange
network. Section III provides the fundamentals of error-
correcting routing in the dual shuffle-exchange network.
Various implementation issues are addressed. The N log N
bound is shown analytically to be achievable with the dual
shuffle-exchange network in Section IV. The analysis and
the correctness of the algorithm are verified by simulation.
Section V deals with various miscellanecus system issues
that deserve further attention and provides preliminary re-
search results in these directions. Finally, the main results
and implications of this work are summarized in Section
VL

II. SHUFFLE-EXCHANGE NETWORK WITH
DerFLEcTION ROUTING

We consider a shuffle-ezchange network (SN) with N =
2" inputs and outputs, and L > n stages, each consist-
ing of 12".. 2 x 2 switch elements. Figure 1 shows an 8 x 8
SN with 5 stages. To explain the self-routing mechanism
of the SN, let us for the time being assume L = n; i.e.,
imagine Fig. 1 to have only 3 stages. We propose a la-
beling scheme to facilitate explanation. The swit¢h nodes
in each stage are labeled by an (n — 1)-bit binary number
from top to bottom. The upper input {output) of each
node is labeled by 0, and the lower input (output) is la-
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Fig. 1. An 8 x 8 shuffle-exchange network.

beled by 1. A packet will be forwarded to output 0 (1)
at stage 1 if the i*h most significant bit of its destination
address is 0 (1). Two consecutive stages are connected by
shuffle interconnection; node A = (ajag+--a,_1) is con-
nected to node B = (b1bg -+ -b,_1) of the subsequent stage
iff agag - --an—1 = b1by -+ -bn_o. The link between node A
and node B will be labeled < b,_3,a; >, where b,_1 is the
output label of node A and a, is the input label of node B.
The path of a packet from input to output is completely
determined by the source address S = sy -« -s,, and the des-
tination address D = dy - - - dn. This path can be expressed
symbolically by using the above numbering scheme as

S=351---8n

<8,51> (s2+-+5,) <dnga> (s3---sndy1)
<dage> | <dizye> (Si41---sndy - di1)
<dipsia> (sipz - sndy---ds)
Clingaa> | Sdaoys> g gl
<d1)0> dy-o-dp=D. |

The above sequence of nodes is embedded in the binary
string §5 - - - Spdy - - - dn—1 and can be revealed by an (n—1)-
bit window moving one bit per stage from left to right.

The state of a packet traveling in the SN can be repre-
sented by a two-tuple (R, X), where R is the routing tag in
the header of the packet and X is the label of the node that
the packet resides. At the first stage, the packet is in state
(dy-+-dy1,s2++-sn). The state transition is determined by
the self-routing algorithm, and can be expressed by

<Tk,T1>
= (

(7‘1'~'7‘k,$1"'$n—1) 7"1'--7‘k-1,2?2'-'18n—17"k)-

Notice that the routing bit used is removed from the rout-
ing tag after each stage. At the final stage, the packet will
reach the state {dn,d;---dn-1), which is independent of
the source address. That is, after this stdge, a packet will
arrive at the desired output regardless where it is coming
from. ‘ ‘

As an aside to clarify things, the location of a packet
as described above actually refers to the location of the

OO NO

(a)

e 0 - SO0

Fig. 2. (a) The state-transition diagram of a packet in the shuffle-
exchange network, where the distance from destination is the state;
(b) One-step penalty state transition.

packet’s header. At any one time, the information bits of
the packet can be spread over several nodes and links along
its path. This is because in actual implementation, the
state of the switch node is set immediately upon the arrival
of the header before the information bits have arrived.

So far we have considered only what happens when the
routes taken by packets do not overlap. Contention occurs
in a switch node when two input packets request the same
output. One of them will be successfully routed while the
other one will be deflected to the wrong output. Thus, if
L = n, only a fraction of the packets can be routed cor-
rectly in the end. However, with L > n, we can implement
a error-correcting routing algorithm as follows. All out-
put links of the same row of stages n and above will be
treated as belonging to the same logical address. When-
ever a packet is deflected, its routing tag will be reset to
d,, ---di, and the routing starts anew from the deflection
point. With this strategy, some packets will reach their des-
tinations after fewer numbers of stages than others, and a
by-pass mechanism is needed to collect and multiplex pack-
ets that reach different physical links of the same logical ad-
dress. The design of the by-pass mechanism is a hardware
issue, and will be elaborated later after the fundamentals
of error-correcting algorithm have been addressed. We see
that a packet will eventually reach its destination address
with good probability provided that the number of stages
L is sufficiently large. The packet is lost, or dropped, if it
can not reach the destination after L stages.

The error-correcting SN is highly inefficient, especially
when n is large. This is because each time an error is
made, routing of the packet must be restarted from the
beginning. This fact is illustrated by the state-transition
diagram in Fig. 2, in which the state is the distance or the
number of stages away from destination. A desired network
would be one with the state-transition diagram shown in
Fig. 2(b), in which the penalty is only one step backward.
We will discuss a network with a one-step error-correcting
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Fig. 3. An 8 x 8 unshuffle-exchange network.

routing algorithm in the next section.

II1. DuAL SHUFFLE-EXCHANGE NETWORK WITH
ERROR-CORRECTING ROUTING

In this section, we introduce an error-correcting routing
algorithm for a dual shuffle-ezchange network (DSN) that
reduces the penalty of deflection discussed in the previous
section. The dual shuffie-exchange network consists of a
shuffle exchange network and an unshuffle-ezchange nei-
work (USN). An 8 x 8 USN is shown in Fig. 3. As can be
seen, it is the mirror image of the SN. Routing bits used in
successive stages proceed from the least significant bit to
most significant bit rather than the other way round. Using
a numbering scheme akin to that in SN, the path of a packet
from input to output with source address § = s; -- - s, and
destination address D = d; - - -dy, can be expressed by

S=81-86n

<P,5n> <dn,5pwm1>

- (51 "‘sn—-l) g (dns1---5a_2)
<dp-1,3n-2> <dig2,8i41>

- = (dig2---dnsy---si)

<dig1,3i>

pai (di+1"‘dnsl"‘si—l)
<di,3i-1> <ds,

2 SRy dy)
W g d, =D

—_— sy = .

An (n — 1)-bit window moving on the binary string
dy---dnsy---sp_1 one bit per stage from right to left will
reveal the sequence of nodes along the path. The initial
state of the packet is (dy ---dp,s1---5n-1), and the state
transition is given by

<rk,2—x> (

(r1corp, 10 Tnoy) TL+: Tket,TkETL *Tpn_2)

At the last stage, the packet is in state (dy,ds - - - dy).
Note that shuffling precedes switching in each stage of the
SN, but switching precedes unshuffling in each stage of the
USN. Therefore, at the last stage of the USN, the packet
would be considered as having reached its destination only
after unshuffling of the output links.

Suppose an USN is overlaid on top of a SN, and each
node in the USN is superimposed upon its corresponding

757
B reaches A reaches
destination destination
<@.0> <i1> <0,0> <1,0>
A:010 - 101 —>(10) —> (01) 01) —> (10). —>
< 1,0>\;(”,/<3,1 > - at USN al SN
<2, 1> <1,0> <00> <0,1>/
B:100 - 100 —> (00) —~—> (01} —> (10) —>

Fig. 4. An example of deflection error in SN being corrected in USN.

node in SN such that a packet in any one of these two
companion nodes can access the outputs of both nodes. In
such a network, the error caused by deflection in the SN
can be corrected in the USN in only one step. This point
can be best illustrated by an example. Suppose there are
two packets A and B input to a SN as shown in Fig. 4,
packet A, from input 010 to output 101, and packet B,
from input 100 to output 100, will collide at the second
stage when they arrive at node 01 and request for output
0. Suppose packet B wins the contention and packet A is
deflected to node 11 in the third stage, Now, if we move
packet A to the companion node 11 in the corresponding
USN and switch it to output 0. Then it will reach node 01
at the next stage, the same node label when error occurred
in the previous stage. At this point, the error caused by
deflection has been corrected and packet A can return to
its normal path in the SN again. Intuitively, this works
because we can undo any routing operation in the SN by
a reverse routing operation in the USN.

The above procedure can be formulated more rigorously
as follows. Consider a packet instate (ry -« -rg, 21+ Zn_1),
the packet should be sent out on link < rg, 2, >. Suppose
it.is deflected to link < 7, 2; > instead and reaches node
(z2---zn_17k) in the next stage. If we attach the bit z;
to the routing tag instead of removing the bit rg, then
the state of the packet will be (ry ---re21, 22 -Zn-17:) in
the next stage. Now, we move the packet to the compan-
ion node in the USN to correct the error. If the packet
is successfully routed this time, it will be sent out on link
<3,y > and return to the previous state
(ry+ 7k, Z1-+-Zp—1). Thus, the error has been corrected
and the packet can return to the SN to complete its re-
maining journey. Similarly, the error occurred in the USN
can also be fixed in one step in the SN. The state diagrams
of this error-correcting procedure are illustrated in Fig. 5.
The diagrams assume packets are deflected to links within
their original networks. In general, a packet in the SN may
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Fig. 5. State diagrams of the error-correcting procedure; top: routing
in SN; bottom: routing in USN.

be deflected to the USN and vice versa, because of rout-
ing interference from other packets whose errors are being
corrected, Furthermore, consecutive deflections can occur.
The next subsection shows that both these considerations
can be taken into account using a simple algorithm.

A. Error-Correcting Routing Algorithm

To allow transferring of packets from the SN to the USN,
and vice versa, companion 2 x 2 switch elements in the SN
and USN are merged to form 4 x 4 switch elements. A
dual shuffle-exchange network built from 4 x 4 switch el-
ements is shown in Fig. 6, where the SN and USN are
combined to form the DSN using a new labeling scheme.
The four inputs and outputs of a switch node are labeled
by 00, 01,10, 11 from top to bottom, where outputs 00 and
01 are connected to the next stage according to an un-
shuffling pattern, and outputs 10 and 11 are connected to
the next stage according to a shuffling pattern. Specifi-
cally, a link with label < 1a, 00 > is an unshuffle link and
a link with label < 0q,1b > is a shuffle link. Two nodes
(a1-+-an-1) and (b1 - - -bn—1) are connected by an unshuf-
fle link < 0b1,1an_1 > if ay ---an-9 = by ---by-1, and by
a shuffle link < 10,..1,0a; > if ag---ap1 = b1+ byoa.
The construction of the link label is such that the second
part of it can be used as the error-correcting routing bits
in case of deflection. This will be elaborated shortly.

Since each switch node has four outputs, two routing
bits are required to specify the desired output of a packet
at each stage. A packet with destination D =d, ---d, can

Nodes interconnected
by a shuiile link

Nodes interconnected
by an unshutfle fink
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Fig. 6. An 8 x 8 dual-shuffle exchange network.

be either routed through the links of the USN or the links
of the SN. Accordingly, the initial routing tag of a packet
is'set to either Ody---0d, or 1d, - .- 1dy, respectively.

The state of a packet at any particular time is
(ciry---ckrk, 21+ xn—-1). There are two possible regular
transitions at the present stage; the packet will be sent out
on an unshuffle link if ¢ = 0 and a shuffle link if ¢ = 1.
The corresponding state transitions are given by

(171 -+ CkTE, T1+ " Lno1)—

<LOrg,lzpn—1>
- (617'1"‘Ck—17’k—1,7'k131"'15n—2)

ifep =0

<1rg,0z1>
- (c1r1 -+ Cke1Tk=1,%2 " Tn_1Tk)

ifckzl

Without deflections, it is easy to see that a packet with
the initial routing set to 0dj ---0d, (1d, ---1d;) will stay
in the USN (SN) links throughout the routing process until
it reaches the desired destination at one of the USN (SN)
links.

Let us consider how to deal with deflections. The error-
correcting procedure can be demonstrated easily as follows.
Suppose a packet in state (c171 - - cp—17k 117k, 21 - - Zn_1)
is deflected, it may go out on any one of the other three out-
puts Org, 07, 17:. We assume, without loss of generality,
that the packet is routed to output link < Ory, lz,_1 >,
then it will arrive at the wrong node (rxzy - - - n—2) rather
than the correct node (zz---Zn—27%) in the next stage.
From the above state transition, the packet will return
to its previous state if we attach the error-correcting tag
lz,..; to the routing tag instead of removing 17;. This
point can be best illustrated by the following sequence of
state transitions:

(ciry - Ck—1Tk—1lri, T1 - ZTn_1)

<O0rg,1Tp-1> }
e (c1ry - - Cp—irkilrplen_y, rpy - Zpa2)

1T pw1,0r> .
= (e1ry -+ Ck—1Tk—1lrg, @1 Tno1)
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Fig. 7. The error-correcting routing algorithm.

Thus, the routing direction is simply given by the following:

1. If output cpry is available and & > 1, remove the two
least significant bits from the routing tag and send the
packet to the next stage.

2. If output cpry is available and ¥ = 1, the packet has
reached its destination; output the packet before the
next shuffle if ¢ = 1, and after the next unshuffie if
c=0. :

3. If output crg is unavailable and k& < n, choose any
one of the other available outputs, attach the error-
correcting tag of the output to the routing tag and
send the packet to the next stage.

4. If output cpry is unavailable and & = n, reset the
routing tag to its original value, either 0d; - --0d, or
1d, - - - 1dy; this prevents the length of the routing tag
from growing in an unbounded fashion.

Figure 7 illustrates the complete error-correcting algorithm.
For any node with label (2 ---2z,_1), the error correcting
tag of outputs 00 and 01 is 1z,_;, and the error-correcting
tag of outputs 10 and 11 is Oxz;. In other words, the second
component ¢z in the link label < cr,éz > is the error-
correcting tag of the output specified by the first compo-
nent ¢r, and = Toya(n-1), Where z.zn-1) is taken from
the node label (2y - - - 2,-1). Therefore, a packet deflected
to link < cr, &z > will return to its previous state via link
< &z,cr > in the next stage. This point is illustrated in
Fig. 8 by the same example given in Fig. 4.

1In the example, the deflection is immediately corrected
in the next stage. In reality, deflections can occur in suc-
cession. It turns out that the algorithm in Fig. 7 is capable

ransition k nd 8

error error correction
Az 010 — (111011, 10) 5 (1110, 61) — (111000, 11} — (110,01} » (11,10} 101

B: 100 — (101011, 00) > (1010,01) .— (10,10) — 100

Fig. 8. An example of error-correcting routing in DSN.

ctrt...ck kO X1,

X2 ... Xn-1 Tk
Ox1]| Oxif
1xnt QR 16 Y 10| On Txns
CIM ... ck ik 1 xn-1,| ™ Cirt...ckrk (€ Jeir.. okt xnt,
ThX1X2 ... Xne2 o | x1x2... xn-1 | kX1X2... Xn-2
%ot QFk  1nx Onc 1o
ox1 ¥
€4 11 ... Ck-1fked,
maslp  deflection X2 .. Xn-1lx

——p= rtegular transition

Fig. 9. Finite-state-machine representation of the error-correcting

routing algorithm. assuming cx = 1.

of dealing with consecutive errors implicitly. To see this,
consider the finite-state machine representation of the al-
gorithm as shown in Fig. 9. The state transitions when
deflection occurred are given by

(CaPp -« CkTE, @1 Tamt)—

L0rlznpe1>
— (crr1---cerelzn_1,rzr - zn_2)

if cxre # Or

£1r,02,>
> (e1ry - cxrk0z1, T2 - -~ TpoaT)

if exry # 1r

Suppose a packet is deflected from the current state, say
state a, to one of the three possible states, say state b.
The error-correcting algorithm guarantees that there is a
transition through which the packet can return to state a
later. But in case another deflection occurs immediately
after the current deflection so that the packet then reaches
state ¢, the algorithm simply attaches two additional error-
correcting bits to the routing tag for correcting the new
deflection. This provides a return transition from state ¢
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to state b, from which the packet can eventually return
to state a. We see that by attaching two error-correcting
bits to the routing tag after each deflection, the way to
correct the deflection is encoded into the routing tag until
the deflection is finally corrected. Thus, the algorithm is
recursive and capable of correcting consecutive errors.

B. Implementation Issues

The above basic concept can be employed in several net-
work design alternatives. Figure 10(a) illustrates concep-
tually a design in which the DSN is configured to have
dimensions N x N. Both the SN and USN in the DSN
are used for routing packets. An incoming packet is routed
either to an SN input or an USN input, and accordingly,
its routing tag is set to either 1d, ---1d; or 0dy ---0d,. In
the first case, the packet’s primary route.is in the SN, and
in the second case, the primary route is in the USN. Any
excursion to the companion network is for error-correction
purposes only. It should be noticed that in addition to
ordinary routing, the primary network may also be called
upon for error correction. This is because a packet can be
deflected to either network regardless of its primary route,
and deflections to the SN must be corrected in the USN,
and vice versa.

Figure 10(b) shows an alternative design which config-
ures the DSN as a 2N x 2N switch. Here, the outputs
didy -+ -dy of the SN and USN belong to two different log-
ical addresses, ldids---d, and 0dids---d,, respectively.
An incoming packet with destination 1dyds---d, will be
assigned the routing tag ld,ld,.i---1di, and a packet
with destination 0dids - --d,, will be assigned the routing
tag 0d10ds - - - 0d,,. This setup has the advantage that switch
size is double that of Fig. 10(a). ‘

For explanation purposes, however, we will concentrate
on the design in Fig. 10(a) for the rest of this subsection.
To further simplify the actual design, let us reexamine the
SN and USN shown in Fig. 4. We note that the first shuffle
of the inputs to the SN is unnecessary. The unshufiling
pattern at the last stage of the USN can also be eliminated.
However, in this case the initial routing tag for a packet in
the USN must be set to 0d,0d10ds...0d,.;. That is, a
2-bit cyclic right shift is performed on the original routing
tag so that the two least significant bits 0d, are used at
the last stage of the new USN. The main advantage of the
above modification is that the by-pass mechanisms within
the SN and USN can both be implemented at the outputs
of switch nodes; otherwise, the by-pass mechanism of the
USN must be implemented at the inputs of the next stage
(i.e., after unshuffling the output links of the present stage).

With the above modification, the block diagram of a
switch node is shown in Fig. 11(a). Figure 11(b) depicts
the connection of by-pass lines across two nodes of succes-
sive stages. The by-pass lines are needed only for stages n
and above. The postprocessors process packets according
to the logic outlined in Fig. 7. A packet that has reached
its destination will be moved to the by-pass line and multi-
plexed with other packets that have reached the same desti-
nation in the previous stages. Note that although the mul-
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Fig. 12. (a) 4x4 banyan deflection switch; (b) An example of internal
conflict when there is no output conflict.

tiplexers create physical queues internal to the network, the
switch is logically an output-queued switch [9]; the physical
buffers for the output queues are distributed across many
switch nodes. Instead of the above, we may also have lines
leading out of the switch from the by-pass locations and
have a large-size multiplexer to multiplex packets for the
same destination; in this case, there is only one physical
queue for each output.

If we implement the 4 x 4 deflection switch using a non-
blocking crossbar switch, a total of 16 crosspoints are needed.
But using a nonblocking switch here would not exploit the
principle of error-correcting routing to the fullest extent.
Since the penalty of deflection is small, it is not necessary
to implement “perfect switching” at the microscopic level.
A 4 x4 banyan network with 4 crosspoints as shown in Fig.
12(a) is good enough. There are two stages, and one of the
two routing bits is used at each stage. A packet deflected
in a 2 x 2 switch is marked. To reduce deflection proba-
bility at the second stage, priorities are given to unmarked
packets if contention occurs. Granted that a packet may
be deflected because of “internal conflict” even when there
is no contending packet for the same “external output” (see
Fig. 12(b)), the increase in the overall deflection probabil-
ity is actually quite small. To see this, consider a simple
estimate as follows: Suppose that all four inputs in the
banyan network are loaded, and that each input packet is
equally likely to be destined for any of the four outputs.
Assume that under contention the winning (undeflected)
packet will be chosen at random. The deflection proba-
bility with a nonblocking switch element is (input load —
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output load) / input load = 1—(1—.75%) ~ 0.3164; the de-
flection probability with a banyan network is 1 — Pr[not
deflected at 1st stage] x Pr[not deflected at 2nd stage]
= 1-0.75(1 — 0.75 x 0.25) ~ 0.3906. We see that the
additional deflection probability attributed to the blocking
structure of the banyan network is only 0.3906 — 0.3164 =
0.0742. Together with the fact that deflections can always
be corrected later without severe penalties in the DSN, this
means that it is probably better to use banyan switch el-
ements rather than nonblocking switch elements to build
the DSN. The nonblocking and banyan design alternatives
will be compared in more detail in the next section.

IV. ANALYSIS AND SIMULATION

This section shows that the complexity of the DSN is of
order Nlog N using an approximate analysis. Simulation
results verifying the validity of the analysis and the correct-
ness of the routing algorithm are then presented. Finally,
the complexities of several implementation alternatives are
compared. :

A. Analysis: Complezily of DSN

Since routing requires at least n = log N stages, clearly
the lower bound on the complexity of the DSN is N log N.
We will now show that N log N is also an upper bound on
the order of complexity for a given packet-loss probabil-
ity requirement Pj,,,. As a simplifying approximation, we
assume that the input packets to a switch node are uncor-
related with each other and that they are equally likely to
be destined for any of the four outputs. We further assume
that the 4 x 4 switch elements are internally nonblocking.
Let p; be the load of an input at stage ¢, i.e., p; is the
probability that there is an incoming packet on an input
link. Let p; be the probability that a packet is successfully
routed at stage t. We have

1—(1-1p)*
Pt="‘—*——( 12! : (1)
Pt

It is easy to show that %f < 0for 0 < pr <1. Since
the load cannot increase as t increases (number of pack-
ets cannot increase), p; is a nonincreasing function of ¢.
Therefore, p1 > pi—1 > --- > p1. This agrees with our
intuition that the probability of success increases as more
and more packets are removed from the network. To ob-
tain an upper bound on L, the number of stages required
to meet a given P, we perform a worst-case analysis in
which pq, for all ¢, is replaced by p; = p. That is, the L
required by our system is bounded above by the L required
In a corresponding “time-invariant” random walk depicted
by the Markov chain in Fig. 13. The state of the Markov
chain is the distance from destination, and ¢ = 1 —p is the
deflection probability.

For analytical convenience, let us adopt a version of the
DSN similar to the one in Fig. 10(a), but in which each
of the N incoming packets is randomly routed to one of
the 2N input ports of the SN and USN, with at most one
packet assigned to the same input port. The input load on
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Fig. 13. Markov chain for bounding L analytically.

each input is p; = 0.5. This gives

1= (1-0.5/4)
- 0.5

Let gi(k) be the conditional probability that a packet
will reach its destination (or state 0) in k& more steps given
that its current state is 1.

p=p ~ 0.828. (2)

go(k) = { (1) ftllie?w?se, ()
gi(k) = pgi-i(k—1)+qgin1(k—1);0<i<n, (4)
gn(k) = pgn-1(k—1)+qgn(k—1). (5)
The z-transform Gi(2) = Y 7, 9i(k)z" is given by
Go(z) = 1, (6)
Gi(z) = pzGi1(2) +¢2Gi1(2); 0 <i<n, (7)
Gn(z) = pzGa-1(z) + qzGa(2). 8)

Equation (7) is a linear difference equation in terms of ¢;
equs. (6) and (8) are the boundary conditions. The gen-
eral technique for solving the difference equation (7) is to
substitute G;(z) = S*(z). This gives

1 p
S%(z) — =S(2) + = =0. 9
() - =S+ ®)
The roots of the quadratic equation are

5195200 = = (12 VT=80) . (10)

The general solution of G(z) is

Gi(z) = C1(2)Si(2) + Ca(2)Si(2). (11)

The constants, C;(z) and Cy(z), can be found by matching
the boundary conditions at ¢ = 0 and i = n using eqns. (6)
and (8). This yields
Gn(z) =
pe[S; ST () = SSNSEE]
(1~ g2)[S7(2) = S5 (2)] =~ p2[S7 () = 5777 (2)]
(12)

We can obtain a Chernoff bound on P, as follows:

o0

Z gn(k)

k=L+1

qu.sa S

o0
Z gn(k)zk_(L+1);for some real z > 1
k=L+1

[~
< m(EHD) Zgn(k)zk
k=0

= z'(L+1)G,,(z).

IA

(13)

Thus, we are interested in Gp(z) for real z > 1. Tt is
clear from inequality (13) that to obtain a tight bound,
=+ must be sufficiently small, or z sufficiently large.
Let us determine a priori that we will choose z large enough
that S1(-) and S3(-) are both complex. Then, it is more
convenient to express them in the polar coordinates of the
complex plane:

$1(8), S2(8) = *6,

p/ge (14)

where j = v/—1 and 6 = cos™! 521%. After some manipu-

lation, we obtain

(p/g)"/?sin 0
sin(n + 1) — \/q/psinng

On examination, substituting § = 0 appeérs to give a rea-
sonably tight Chernoff bound. Doing so yields

Gn(8) = (15)

o (p/gn?
G 0=0= o T
(p/Q)™*

T D= aln) (19)

Now, § = 0 implies z = ﬁ. Substituting the above Gn(-)

and z into inequality (13) and taking logarithms on both
sides yields an upper bound for L:

L < 2.793n —3.5541n(n + 1) + 3.554 In P}, +1.162. (17)

Since each stage consists of N/2 switch elements, the com-
plexity of the DSN for a given Pj,,s is therefore of order
NlogN.

B. Simulation Results

We liave simulated several alternative DSN designs and
collected their P, statistics. We have also experimented
with several deterministic contention-resolution policies for
the 4 X 4 nodes and found that routing deadlocks could oc-
cur quite easily for many of the policies. Details of deadlock
issues are given in the next section. The simulation results
presented here are based on a deadlock-free policy in which
priorities are given to packets closest to their destinations.

Figure 14 plots Pi,s, versus L for various values of n.
These are the results based on the DSN design in Fig.
10(a). That is, the DSN is used as an N x N switch,
and an incoming packet is randomly routed to one of the
two alternative input ports of the SN and USN. Note that
this is slightly different from the assumption in the analy-
sis, where the packet can be routed to any of the 2N input
ports. This, however, should not give rise to drastically
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Fig. 14. Pi,s, versus L for various n; (dashed line: design using
nonblocking 4 X 4 switch nodes; solid line: design using 4 X 4 banyan

switch nodes).

different performance results. The dashed-line curves cor-
respond to the design with 4 x 4 nonblocking switch nodes
(see previous section). The solid-line curves assume 4 x 4
banyan switch elements instead (see Fig. 12). From the
graph, we see that the L needed for a fixed Pjy,, in the
second design is just slightly larger than that in the first
design. Furthermore, for a given n, the difference in L is
almost constant regardless of Py, (for Plo,s < 1072).

To examine the same result from a different angle, Fig.
15 plots L versus n for Pi,,, = 1073 and Pi,,, = 1075,
As expected, and in agreement to our analysis, L is linear
in n. We also see that the difference between the two de-
signs is in the gradients of their lines. For the nonblocking-
element design, the gradient is about 3.0, whereas for the
banyan-element design, the gradient is about 3.2, a small
difference indeed. Therefore, in terms of crosspoint count,
the banyan-element architecture is less complex than the
crossbar-element architecture by a factor of 32 x & = 0.27.
This observation and the fact that a more complex algo-
rithm is needed to set the crossbar switch element clearly
indicates that the banyan switch element is preferable.

Based on the banyan-element architecture, we next com-
pare the designs of Fig. 10(a) and Fig. 10(b). To construct
an N x N DSN using the second design, an %’- X % SN and
an % x %"—- TUSN are used. With this strategy and under full
load, all input ports have one incoming packet. Therefore,
it is expected that a larger L is needed to meet a given Pio,,.
Figure 16 plots L versus n for Pioss = 10~%. The solid line
corresponds to the design in Fig. 10(a) and the dashed line
corresponds to the design in Fig, 10(b). Again, we see that
the gradients of the linear curves are the difference between
the two designs. From the complexity viewpoint, as long
as the L required in the second design is less than twice
that in the first design, then it is worth using the second

60
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4 switch element
———— Banyan
switch element
0 | B E— T - T
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n

Fig. 15. L versus n, fixing Ply,, at 1072 and 107%; (dashed line:
design using nonblocking 4 x 4 switch nodes; solid line: design using
4 X 4 banyan switch nodes).
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Fig, 16. L versus n, fixing Pjy,, at 10~%, assuming 4 x 4 banyan
switch nodes. (dashed line: using N/2 X N/2 SN and USN to realize
N x N DSN; solid line: using N x N SN and USN to realize N x N
DSN).

design. This is because the “width” of the second design is
half that of the first design. From the graph, we see that
this is indeed the case.

V. MISCELLANEOUS SYSTEM ISSUES

There are several miscellaneous issues that deserve fur-
ther attention. Some preliminary discussions are sketched
in the following.
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A. Deadlock Prevention in DSN

Deadlocks could occur in routing when a group of packets
contend with each other in a periodic fashion and they
take turns winning the contention. This may give rise to
situations in which their distances to destinations oscillate
and fail to approach zero. As a result, no matter how large
L is, Pisss can not be made arbitrarily small.

A deadlock example involving two packets is given in Fig.
17. In the 4 x 4 DSN, the source and destination addresses
of packet A are both 00, the the source and destination
addresses of packet B are both 01. As shown, both pack-
ets are destined for output 00 at the first stage. Suppose
we adopt a policy of favoring packets on upper input ports
when contention arises. Then, A wins the contention, and
B is deflected to output 01. Two error-correction rout-
ing bits, 00, are then attached to the routing tag of B.
The two packets arrive at the same node again at the next
stage, both wanting to access output 00. But B wins con-
tention this time because it is on the upper input port.
Meanwhile, A will be deflected to output 01 and given two
error-correction routing bits, 00. We see that the states
of A and B after this stage are the same as their origi-
nal states in the beginning. Thus, the contention pattern
repeats itself indefinitely. Mote generally, deadlocks can
involve more than two packets and can be quite subtle,
Two simple ways to prevent deadlocks are now discussed.

Random Routing

An obvious way to avoid deadlock is to randomize the
contention arbitration process in the switch nodes. When
more than one packets want to access the same output,
the winner will be drawn randomly. With probability one
there will not be a deadlock, since the states of the packets
cannot repeat themselves indefinitely. QOur approximate
analysis in the previous section assumes this policy.

Step-up Priority Rouling

The simulations in the preceding section assume a prior-
ity scheme in which packets closest to their destinations are
favored. Deadlocks will not occur with this policy either.
To see this, suppose that a group of packets are involved
in a deadlock. Let us concentrate on a packet that has the
smallest distance to destination. Certainly, the distance
of this packet will be decreased by one after each stage.
Otherwise, it is losing contention to another packet with
the same distance, and we will concentrate on this other
packet instead. Eventually, we see that a packet will break
free and reach distance 0 (i.e. its destination).

More generally, criteria other than the closest distance
could be used. Let p(A) denote the priority of packet
A. The priorities may be described by a partial order >,
whereby p(A) > p(B) means packet A has a priority higher
than or equal to that of packet B. In the same manner,
p(A) > p(B) means the priority of A is strictly higher than
that of B. If each time a packet is successfully routed, its
priority is raised by one one or more steps, then the policy
is deadlock-free. The proof is essentially the same as be-
fore. Note that favoring packets with the longest distance
does not fall under this scheme and therefore may not be
deadlock-free.

A remaining research problem is whether there are other
simple deadlock-free policies. It seems that the determina-
tion of whether a given policy is deadlock-free is a nontriv-
ial problem in general.

B. A Class of Random-walk Models Realizable with DSN

The DSN operation assumed so far has an associated
random-walk model as shown in Fig. 2(b). We now show
that a rich class of random-walk models can actually be
realized with the DSN. :

State n in Fig. 2(b) is different from other states because
error in this state does not increment the distance further;
the routing tag is simply reset to the original routing tag.
Suppose that this state is treated no differently than other
states. The corresponding random-walk model is shown in
Fig. 18(a), in which there is no reflecting barrier. The
advantage of removing the boundary is that the number
of by-pass locations in the DSN can be decreased. With
this new random walk, regardless of the state of a packet,
each deflection means the packet will need two more steps
to reach its destination, In other words, a packet that
experiences a total of k deflections will exit at stage n+ 2k
of the DSN. Therefore, only stages n + 2k, k = 0,1,2...,
need to have by-pass mechanisms installed.

The disadvantage of the above scheme is that the length
of the routing tag may in principle grow in an unbounded
fashion. The random walk in Fig. 18(b) also only needs
by-pass mechanisms at stages n + 2k, &k = 0,1,2..., but
bounds the routing tag to at most 2(n + 1) bits. To realize
this random walk, if an error is made in state n, the rout-
ing tag is reset to the original destination address plus two
dummy bits: 0d,0ds---0dnz129 or ldpldy_q---1diz 2y,
where z,2; are the dummy routing bits. This moves the
packet to state n + 1. In state n + 1, routing will be con-
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Fig. 18. Several random-walk models realizable with DSN: (a) Ran-
dom walk without boundary; (b) Boundary with one-step reflection
to the right; (c) 3-step penalty transition.

sidered successful regardless of the outcome and the two
dummy routing bits removed. Consequently, a packet in
state n + 1 will move to state n in one step with probabil-
ity 1. Thus, we have a boundary in the random walk that
reflects the walk one step to the right.

In general, we could even further limit the by-pass loca-
tions to stages n+2jk, k = 0, 1,2, ... (for some fixed integer
J)- This is achieved by a random walk in which the penalty
of deflection is 2j — 1,5 = 1,2, ..., steps backward. For il-
lustration, an example with j = 2 is shown in Fig. 18(c).
The by-pass locations for the corresponding DSN are at
n+4k k=0,1,2, ... since each left transition means four
extra steps will be required to reach state 0. We first de-
scribe the modification on the routing algorithm when the
packet is in state 7,7 < n — 2. Imagine that deflections
always happen in pair in the DSN, so that each time the
packet is deflected, it will be deflected again the next time.
Therefore, a total of four additional steps will be needed,
two for the deflections and two for the corrections. We can
“force” the above situation by introducing an additional
one-bit field in the routing tag called deflection balance.
Ordinarily, the value of this field is 0. When deflection oc-
curs, two routing bits will be added according to the origi-
nal routing algorithm, and the deflection-balance field will
be set to 1. At the next stage, regardless of the routing re-
sult, the packet will be considered as having been deflected
because. its deflection-balance field is 1. Thus, two more
routing bits will be added, again according to the original
routing algorithm, and the deflection-balance bit set to 0.

In this way, deflections are guaranteed to occur in pairs.

To complete the modification above, the deflections in
states n, n — 1, and n — 2 must be treated differently be-
cause the state transitions cross the boundary at state n;
when deflections occur in states n —m, m = 0,1, or 2, the
routing tag will be reset to the original routing tag plus
2(3 — m) dummy routing bits. As in Fig. 18(b), routing
in states above n will be considered successful regardless of
the outcome.

It is easy to generalize the above scheme to j = 3,4, ....
The deflection-balance field will simply be used to record
the number of additional deflections that must be forced
subsequent to the first deflection. However, as j increases,
the penalty associated with deflection also increases. - A
larger L will then be needed in order to meet a fixed Py, .
Nevertheless, intuitively, as long a j is independent of n,
the complexity of the DSN will still be of order NlogN,
albeit the associated “constant” (i.e., the gradient of the
L-versus-n curve) may be very large for large j. This state-
ment remains to be substantiated. In addition, the prac-
tical trade-offs between reduced by-pass locations and in-
creased L need to be studied more carefully.

C. Circuit Switching using DSN

Instead of using the DSN as a packet switch, one can
also operate it as a circuit switch. In circuit switching, only
one input is allowed to access an output at any given time.
The multiplexer at a by-pass location is then replaced by a
single line together with a mechanism to indicate whether
the corresponding output is busy. To establish a new cir-
cuit, a probe signal containing the destination address is
launched into the switch. It can be deflected by the exist-
ing circuits, but the same routing algorithms can be used
to correct deflections. When the probe signal reaches its
destination, the input will be informed whether the output
is busy through a backward path running parallel to the
forward path. If the output is idle, the circuit will then be
accepted and it will use the path set by the probe signal.

In the context of circuit switching, the probability of
blocking can be made arbitrarily small with sufficiently
large L. A question of theoretical interest is how large
should L be in order to totally eliminate circuit blocking
given that no two circuits are destined for the same output.
We conjecture that L is of order v/N, although this remains
to be confirmed by further research. In practice, however,
L should be only of order log N to make the switch “seldom
blocking”.

1V. CoNcLUSION

This paper has described a dual shuffle-exchange net-
work that makes use of the principle of error-correcting
routing. Based on a novel error-correcting algorithm, the
dual shuffle-exchange network can achieve the Shannon’s
lower bound N log N on switch complexity [11] while satis-
fying four desirable criteria: 1) self-routing property; 2) no
queueing of packets at the inputs or inside the switch; 3)
arbitrarily small packet-loss probability; 4) close-to-100%
throughput. As far as packet switches with the above prop-
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erties are concerned, outr present result is stronger than the
Nlog N(loglog N) complexity of the dilated-banyan net-
work established previously by us. We have also conducted
detailed implementation studies which demonstrate that
the dual shuffle-exchange network is not only theoretically
optimal, but also practically superior to many other switch
designs.

On the whole, this work suggests that the principle of
efror-correcting routing is a powerful switch design tech-
nique. Intuitively, the dual shuffle-exchange network can
achieve the lower bound on switch complexity because the
penalty of routing errors is minimal. For further research,
it will be interesting to investigate the possibility of other
Nlog N error-correcting networks and the characteristics
common to this class of networks. On the practical side, the
combination of error-correcting routing with other switch
design techniques, for example, dilation [3], will also be of
much interest.
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