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Abstract—This paper studies the problem of energy con-
servation of mobile terminals in a multi-cell TDMA network
supporting real-time sessions. The corresponding optimization
problem involves joint scheduling, rate control, and power
control, which is often highly complex to solve. To reduce the
solution complexity, we decompose the overall problem into
two sub-problems: intra-cell energy optimization and inter-cell
interference control. The solution of the two subproblems results
in a “win-win” situation: both the energy consumptions and inter-
cell interference are reduced simultaneously. We simulateour
decomposition method with the typical parameters in WiMAX
system, and the simulation results show that our decomposition
method can achieve an energy reduction of more than70%
compared with the simplistic maximum transmit power policy.
Furthermore, the inter-cell interference power can be reduced
by more than 35% compared with the maximum transmit power
policy. We find that the interference power stays largely constant
throughout a TDMA frame in our decomposition method. Based
on this premise, we derive an interesting decoupling property:
if the idle power consumption of terminals is no less than their
circuit power consumption, or when both are negligible, then the
energy-optimal transmission rates of the users are independent
of the inter-cell interference power.

Index Terms—Energy-efficiency, power control, rate control,
scheduling, multi-cell wireless system.

I. I NTRODUCTION

Green wireless refers to the research area that reduces
the carbon footprint and energy consumption of information
technology (IT) industry. There are more than 4 billion cell-
phones in the world [1], and wireless devices and equipments
consume 9% of the total energy of IT, i.e., as much as 6.1
TWh/year [2]. Future wireless systems such as 3GPP-LTE
or WiMAX2 are evolving to support broadband services that
demand a higher capacity than can be provided by today’s
wireless network. In most cases, this is achieved at the expense
of a higher energy consumption and a more severe impact on
the environment. Besides the environmental concern, energy

Liqun Fu is with the Institute of Network Coding, The ChineseUni-
versity of Hong Kong, Shatin, New Territories, Hong Kong, email: lq-
fu@inc.cuhk.edu.hk. Hongseok Kim is with the Department ofElectronic En-
gineering, Sogang University, Seoul, Korea, email: hongseok@sogang.ac.kr.
Jianwei Huang, and Soung Chang Liew are with the Department of Informa-
tion Engineering, The Chinese University of Hong Kong, Shatin, New Terri-
tories, Hong Kong, emails:{jwhuang,soung}@ie.cuhk.edu.hk. Mung Chiang
is with Department of Electrical Engineering, Princeton University, NJ 08544
USA, email: chiangm@princeton.edu.

This work is supported by AoE grant E-02/08 from the UGC of the
Hong Kong SAR, China, the General Research Funds (Project Number
412509, 412511, 412710, and 414911) established under the University
Grant Committee of the Hong Kong Special Administrative Region, China,
the Sogang University Research Grant of 2011, Google, Princeton Grand
Challenge grant, and NSF CNS-1011962.

reduction can also lengthen the battery lifetime of terminals
and improve users’ experiences.

Since radio frequency (RF) transmission consumes a signif-
icant amount of energy of terminals, we will focus on reducing
their energy consumption in this paper. In particular, we
will consider a time-division-multiple-access (TDMA) cellular
network. In each cell, a base station serves a number of
users. The transmissions of these users do not overlap in
time. However, the transmissions of users in different cells
may overlap and interfere with one another. Each user has a
certain traffic requirement. We want to answer the following
question: how do we schedule the uplink transmissions so as
to minimize the total energy consumption while satisfying the
traffic requirements of all users?

The gist of the problem is as follows. In the absence of inter-
ference, for a transmission, Shannon’s capacity formula states
that x = w log

(

1 + pG

σ2

)

, wherex is the data rate,w is the
bandwidth,p is the transmit power,G is the channel gain, and
σ2 is the noise power. Suppose that the transmission is turned
on for T seconds within a frame. Then, the number of nats
delivered per frame isb = xT = wT log

(

1 + EG
Tσ2

)

, whereE
is the energy consumption perb nats. From this expression,
we immediately see a tradeoff between the transmission time
T and the energyE when deliveringb nats: increasing the
transmission timeT makesE smaller. Multiple transmissions
complicate this problem in two ways:

1) Intra-cell interaction: Each TDMA frame has a finite
amount of time resource. Within each cell, a longer
transmission time of one terminal means a less trans-
mission time for other terminals. Thus, their transmit
energies trade off against each other.

2) Inter-cell interaction:Across cells, the interference re-
ceived by a base station depends on simultaneous trans-
missions in other cells. If simultaneous transmissions
can be properly scheduled, mutual interferences can
be reduced, which in turn can reduce the total energy
consumption. This can be intuitively seen fromb =

wT log
(

1 + EG
T (σ2+q)

)

, whereq is the interference; that
is, all things being equal, a smallerE is required if the
interferenceq can be reduced.

Thus, to minimize the total energy consumption, we need
to jointly consider the time fraction allocated to each trans-
mission within each cell and the scheduling of simultane-
ously transmissions across cells. Besides the transmit energy
E, wireless devices also consume circuit energy when they
transmit, and “idle” energy when they do not. The relative
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magnitudes of these energies have a subtle but important effect
on the solution to our problem.

Finding an overall optimal solution to the energy minimiza-
tion problem is non-trivial, as elaborated in Section III. In
this paper, we propose a method that decomposes the overall
problem into two sub-problems along the line of 1 and 2
above. That is, we first consider the sub-problem of intra-
cell time fraction allocation, assuming interference is constant
throughout a frame (this assumption is to a large extent valid
according to our simulation experiments – see Section V-B).
After the transmission time fractions (and target SINRs) in
each cell are fixed, we then consider the transmission schedul-
ing across cells and set the transmit powers of the terminalsto
fulfill the target SINRs. Based on the solution to the second
sub-problem, we then adjust the inter-cell interferences and
solve the first sub-problem again. The process is iterated, if
necessary, by alternating between these two modules.

The solution found by this decomposition method is guaran-
teed to be feasible, albeit not necessarily optimal. Simulations
indicate that this decomposition method can achieve energy
reduction of more than70% and inter-cell interference power
reduction of more than35% compared with the simplistic
scheme of maximum power transmission. We also derive an
interestingdecoupling propertyunder the assumption that the
inter-cell interference power stays constant over a TDMA
frame: if the idle power consumption of terminals is no
less than their circuit power consumption, or when both are
negligible, then the energy-optimal transmission rates ofthe
users areindependentof the inter-cell interference power.

A. Related Work

Energy-efficient transmission was first explored in the con-
text of sensor networks [3]–[6]; for example, each sensor
node transmits packets as slowly as is allowed by the delay
constraint, in the so-called lazy scheduling [6].

In cellular networks, most of the research on power control
focuses on controlling interference, i.e., sustaining a required
signal to interference-and-noise ratio (SINR) to achieve afixed
target data rate, e.g., for reliable voice connections, see[7]–
[12] and the long list of references therein.

Recently, energy-optimal uplink scheduling for cellular sys-
tems was proposed in TDMA systems [13]. It was shown
that, by properly choosing the transmit powers, as well as the
instantaneous rates and the time fractions of the users within
a cell, average energy consumption per real-time session can
be minimized. In addition, it was demonstrated that energy
saving ratio is substantial, e.g., more than 50% when the
network is under-utilized. However, [13] focused on the single-
cell case. The multi-cell case is of much interest because
practical deployments of wireless networks contain multiple
cells. Combining intra-cell time fraction allocation and inter-
cell scheduling/power control can potentially be more energy-
efficient. Extensive simulations by us verify that combin-
ing energy-optimal transmission with inter-cell power control
could improve the energy efficiency by50% compared with
the case when only intra-cell energy optimal transmission,as
in [13], is performed. Ref. [14] studied the energy-efficient

power control in OFDMA based multi-cell networks. The
authors proposed a distributed non-cooperative game approach
to maximize the overall network energy efficiency, which
achieves a trade-off between system throughput and energy
consumption.

The remainder of this paper is organized as follows. In
Section II, we describe our system model and assumptions.
Section III is devoted to the problem formulation. The pro-
posed energy-efficient policy is provided in Section IV. We
provide the simulation results in Section V. In Section VI, we
discuss possible future works, followed by the conclusion in
Section VII.

II. SYSTEM MODEL

We consider energy efficient uplink communications in
wireless cellular networks. Within each cell, the users send
traffic to the same base station (BS) via Time Division Mul-
tiple Access (TDMA). The time is divided into fixed length
frames. Within a frame, each user is allocated a dedicated
time period, during which it is the only uplink transmitter
within the cell. There is no interferences among users in the
same cell. The concurrent transmissions of different users
at different cells, however, lead to inter-cell interferences.
We would like to choose the proper time allocations and
transmission powers for users in multiple cells, such that the
total energy consumption is minimized while satisfying the
Quality of Service (QoS) requirements.

A. Power Consumption Model

We consider a comprehensive terminal power consumption
model, which includes the transmit power, the circuit power,
and the idling power [3], [13], [15], [16].

A terminal’s transmission ratex depends on the transmit
powerp according to Shannon’s capacity formula:

x = w log

(

1 +
pG

σ2 + q

)

⇔ p =
(

exp
( x

w

)

− 1
) σ2 + q

G
,

(1)
wherew is the bandwidth,G is the channel gain,σ2 is the
noise power, andq is the inter-cell interference. There is drain
efficiency of the RF power amplifier at a transmitter, denoted
by θ ∈ (0, 1), which is defined as the ratio of the output power
and the power consumed in the power amplifier. Therefore,
given an output power ofp, the power assumption at the RF
amplifier of a transmitter isp/θ1.

Besides the transmit power, an active terminal also con-
sumes non-negligible circuit power [3], [15], which is the
power of the circuit blocks in the transmission chain, e.g.,
mixers, filters, local oscillators, and D/A converters. When a
transmitter is idle, there is also power consumption due to

1In practical wireless systems, different modulation schemes and forward
error correction (FEC) codes may be used. Compared with the Shannon’s
capacity formula, the impact of adaptive modulation and coding (AMC)
schemes results in a constant SINR gap [17]. This constant factor can be
absorbed by the parameterθ, which denotes the cumulative effect of the
drain efficiency, modulation and FEC.
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TABLE I
NOTATION SUMMARY

Notation Physical Meaning

m,n the indices of cell
i, j the indices of user
k the index of concurrent transmission set
A the set of all users in one cell
S the concurrent transmission set
M the number of cells
K the number of concurrent transmission sets in one frame
λ the arrival rate of users to the multi-cell network
r session rate requirement
x instantaneous transmission rate
p transmit power
q inter-cell interference power
σ2 noise power
γ target SINR requirement
w spectral bandwidth
α circuit power
β idling power
δ α− β

θ drain efficiency
Gi(m)C(m) the channel gain of useri(m) in cell C(m)

Gi(n)C(m)
the cross channel gain of useri(n) in cell C(n) to the

base station of cellC(m)

B relative channel gain matrix
ϕ Lagrange multiplier

leakage currents [16]. Therefore, the total power consumption
f(x) of a terminal with transmission ratex is given as

f(x) =

{

(

exp
(

x
w

)

− 1
)

σ2+q
θG

+ α, if x > 0 (active),

β, if x = 0 (idling),
(2)

whereα is the circuit power when a terminal is active, andβ is
the power consumed in idle state. In Section III-C and Section
IV, we will show that the circuit power and the idling power
have a substantial impact on the time and power solutions of
energy efficient transmissions.

Main notations of this paper are summarized in Table I. We
use lower boldface symbols (e.g.,p) to denote vectors and
uppercase boldface symbols (e.g.,B) to denote matrices. We
use calligraphic symbols (e.g.,A) to denote sets. The vector
inequalities denoted by� and� are component-wise.

B. Inter-cell Interference

Consider a system with a set ofM cells:{C(m), 1 ≤ m ≤
M}. Each cellC(m) contains a set of users (terminals)A(m).
The users within the same cell are allocated different time
fractions for uplink transmissions. However, users in different
cells may transmit simultaneously and cause interference to
each other. As can be seen from (1), the transmit power
consumption is closely related to the interference power level.
Given a fixed transmission ratex, a larger inter-cell inter-
ference powerq leads to a larger transmit powerp. Next
we calculate the minimum transmit power vector and the
minimum interference power vector that can support the rate
requirements of several simultaneous transmissions.

Let S denote the set of users that are active simultaneously
in the multi-cell network at a particular instant. Since TDMA

is considered within each cell, the size of setS is no larger
than the number of cellsM , i.e., |S| ≤ M . Without loss of
generality, we only need consider the|S| cells with active
users. Let us define an|S| × |S| nonnegative cross channel
gain matrixGS = [gmn], with entries as follows:

gmn =

{

0, if m = n,

Gi(n),C(m), if m 6= n,
(3)

whereGi(n),C(m) is the channel gain from useri(n) in cell
C(n) to the BS of cellC(m). We further define an|S| × |S|
nonnegative relative-channel-gain matrixBS of setS, which
is the cross channel gain matrixGS normalized by the direct
channel gains. The elements in matrixBS = [bmn] are as
follows:

bmn =

{

0, if m = n,
Gi(n),C(m)

Gi(m),C(m)
, if m 6= n,

(4)

whereGi(m),C(m) is the channel gain from useri(m) in cell
C(m) to the BS of cellC(m). Let γS =

(

γi(m) : i(m) ∈ S
)

denote the target SINR vector of the users in setS. LetD (γS)
be the|S| × |S| diagonal matrix whose diagonal entries are
the elements inγS . The SINR requirements of the users in
setS can be written in matrix form as

(I−D (γS)BS)pS � D (γS)vS , (5)

where I is an |S| × |S| identity matrix, and vectorvS =
(

σ2

Gi(m),C(m)
: i(m) ∈ S

)T

is the noise power vector normal-
ized by the channel gain.

Let ρ (D (γS)BS) denote the largest real eigenvalue (also
called the Perron-Frobenius eigenvalue or the spectral radius)
of matrix D (γS)BS . The following well-known proposition
gives the necessary and sufficient condition of checking the
feasibility of a target SINR vectorγS and computing the
minimum transmit power solutions that achievesγS .

Proposition 1 ( [18]–[20]): The necessary and sufficient
condition for a target SINR vectorγS to be feasible is

ρ (D (γS)BS) < 1. (6)

If γS is feasible, the component-wise minimum transmit
power to achieveγS is

pS(γS) = (I−D (γS)BS)
−1

D (γS)vS . (7)

Proof sketch: By the Perron-Frobenius theorem [18],
we know thatρ (D (γS)BS) is a positive, simple eigenvalue
of matrix D (γS)BS , and its corresponding eigenvector is
positive componentwise. From matrix theory, we know that
ρ (D (γS)BS) < 1 is a necessary and sufficient condition
for (I−D (γS)BS)

−1 to exist [19]. Furthermore, [20] shows
that (7) is a Pareto-optimal solution to (5). That is, any transmit
powerp that satisfies (5) is component-wise no smaller than
pS(γS), i.e.,p � pS(γS).

The total interference and noise power at the BS of cell
C(m) is given by

qC(m) =
∑

i(n)∈S,n6=m

Gi(n),C(m) · pi(n) + σ2,
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which can be written in matrix form as

q = GS · p+ ηS . (8)

Proposition 2 ( [9]): The interference power vector of set
S corresponding to the minimum transmit power solution in
(7) is given by

qS(γS) = (I−BSD (γS))
−1

ηS , (9)

where ηS =
(

σ2, σ2, · · · , σ2
)T

is the noise power vec-
tor. Each element inqS(γS) denotes the interference pow-
er received by the corresponding base station. Furthermore,
qS(γS) is the component-wise minimum interference power
vector with the target SINR vectorγS . That is, for any transmit
power solutionp that achieves an SINR vector no less than
γS , its corresponding interference power vectorq satisfies

q � qS(γS).

Proof: The interference power vector corresponding to
the transmit power solutionpS(γS) in (7) is

qS(γS) = GS · pS(γS) + ηS

= GS (I−D (γS)BS)
−1

D (γS)vS + ηS

= BS (I−D (γS)BS)
−1

D (γS)ηS + ηS

=
(

BS (I−D (γS)BS)
−1

D (γS) + I
)

ηS

= (I−BSD (γS))
−1

ηS .

For any transmit power solutionp that achieves an SINR
vector no less thanγS , we havep � pS(γS). Furthermore the
cross channel gain matrixGS is non-negative. According to
(8), the interference power vector corresponding top satisfies
q � qS(γS).

C. Dynamic User Sessions

We study a dynamic system with real-time application
sessions (e.g., video/voice sessions). Our target is to minimize
the average energy consumption per session in a stationary
system. We assume that the users’ arrival to each cellC(m)
follows a Poisson process with rateλC(m). Then the arrival

rate to all the cells isλ =
M
∑

m=1
λC(m). Let J be a random

variable denoting the energy consumption persessionandP
be a random variable denoting the total power consumption
in the system. The following proposition shows the relation
betweenE[P ] andE[J ] in a stationary system:

Proposition 3 ([13]): In a stationary system with user ar-
rival rateλ, we haveE[P ] = λE[J ].

According to Proposition 3, minimizing the average energy
consumption per session is equivalent to minimizing the
average power consumption of all the users in the system.
Furthermore, there is a special feature for real-time sessions:
the connection duration of a real-time session is independent
of the allocated transmission rate. For example, allocating a
higher transmission rate to a voice session cannot make the
phone call end earlier, and the stationary distribution of the
number of users in the TDMA system is independent of the
transmit powers as long as the rate requirements are satisfied

[13]. Therefore, minimizing the energy consumption in a
dynamicsystem that supports real-time sessions is equivalent
to minimizing the energy consumption with astatic number
of users in the TDMA system2. In the rest of the paper, we
will focus on the average power minimization problem in the
multi-cell system with a static number of users.

III. PROBLEM FORMULATION AND DECOUPLING

A. Power Minimization in Multi-Cell Networks

We assume that the frames are synchronized across all
cells in the multi-cell network. Without loss of generality,
the frame duration is normalized to be1. Since different
users are active at different times in different cells, we will
have different concurrent transmission sets in the multi-cell
network. Suppose there are a totalK concurrent transmission
sets, denoted by{Sk, 1 ≤ k ≤ K}. Each setSk is active for a
time fraction oftk (0 ≤ tk ≤ 1) within a frame. If we consider
all possible combinations of simultaneous active users, thenK

can be as large as
M
∏

m=1
(|A(m)|+ 1). For example, in a multi-

cell network with19 cells with each cell having9 users, we
haveK = 1019. Let xSk

=
(

xi(m)(k) : i(m) ∈ Sk

)

denote
the instantaneous transmission rate vector of setSk. According
to Shannon’s capacity formula, the relation between the instan-
taneous transmission rate vectorxSk

and the corresponding
SINR vectorγSk

is

xSk
= w log

(

1 + γSk

)

⇔ γSk
= exp

(xSk

w

)

− 1. (10)

Substituting (10) into (7), then the minimal power vector
pSk

that supportsxSk
is

pSk
(xSk

) =
(

I−D
(

exp
(xSk

w

)

− 1
)

BS

)−1

·

D
(

exp
(xSk

w

)

− 1
)

vS . (11)

Recall thatA(m) is the set of users in cellC(m). For a user
i(m) ∈ A(m) with real-time sessions, its QoS requirement is
measured as its session rate requirementri(m). We assume that
there is call admission control that guarantees that the system
load is no larger than the system capacity. This guarantees
that the rate requirements of all the users admitted to system
can be satisfied. As shown in Section II-C, under Proposition
3, given an arrival rateλ to the system, the average energy
consumption per session is proportional to the expected power
usage of all users at a moment in time in a stationary system.
Thus minimizing the average energy per session is equivalent
to minimizing the expected power usage of the system in a
multi-cell system. To represent this problem mathematically,
we define the following binary coefficients for each user
i(m) ∈ A(m), 1 ≤ m ≤ M , and1 ≤ k ≤ K,

zi(m)(k) =

{

1, if i(m) ∈ Sk,

0, if i(m) /∈ Sk.
(12)

2This only holds for dynamic systems that support real-time sessions, but
does not hold for other non-real-time sessions such as file transfer. For delay-
tolerant non-real-time sessions, the stationary distribution of the number of
users heavily depends on the rate and power control allocations of the users.
For example, allocating a lower transmission rate to a file transfer session will
keep the corresponding user staying longer in the system.
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Problem: Average Power Minimization in a Multi-cell
Network

minimize
K
∑

k=1

tk





M
∑

m=1





∑

i(m)∈A(m)

(

(1 − zi(m)(k))β

+zi(m)(k)

(

α+
pi(m)(k)

θ

))

))

subject to
K
∑

k=1

tk = 1,

K
∑

k=1

zi(m)(k) · xi(m)(k) · tk = ri(m), ∀i(m), ∀m,

variablesxi(m)(k) ≥ 0, ∀k, ∀i(m), ∀m,

tk ≥ 0, ∀k.
(13)

The objective function in (13) is the total average power
consumption of all the users in the system and consists of two
parts. The first part is the power consumption when the users
are idle. The second part is the power consumption when the
users are active in transmissions, wherepi(m)(k) is computed
according to (11) as a function ofxSk

. The first constraint in
(13) states that the total time allocated to all the concurrent
transmission sets equals the frame length, which is normalized
to be 1. Here, we treat the case where no user is active in
any cell as a special concurrent transmission set ofSk = ∅.
The second constraint in (13) states that each user’s session
rate requirement is satisfied. The variables in (13) are the
time fraction variablestk and the instantaneous rate variables
xi(m)(k).

It is challenging to solve Problem (13) directly and op-
timally. First, if we consider all possible combinations of
simultaneous active users, then the total number of concurrent
transmission setsK increases exponentially with the cell num-
berM . Second, the transmit powerpi(m)(k) in the objective
function of (13) is a complicated function of the instantaneous
rate variablesxi(m)(k)’s. The transmit power is different for
each useri(m) and each different concurrent transmission set
Sk.

In this paper, we focus on designing a heuristic algorithm
to solve Problem (13) based on one key assumption:

Assumption 1:For each cellC(m), we assume the interfer-
ence experienced by the BS,q(m), remains constant within a
time frame.

Assumption 1 is later verified reasonable with the simulation
results in Section V-B. With this assumption, the users’ trans-
mission schedule in one cell does not affect the transmissions
in other cells. Without loss of generality, we will simply
assume that the transmission order of the users in each cell is
fixed based on the arrival order of the corresponding sessions.
We will tackle Problem (13) by solving intra-cell average
power minimization and inter-cell power control separately.

B. Intra-Cell Average Power Minimization

Based on Assumption 1, the average power minimization
problem of a given cell turns out to be a convex optimization

problem. Let us consider cellC(m). The session rate require-
ment of useri(m) ∈ Am is ri(m). If the instantaneous trans-
mission rate ofi(m) is xi(m), then the time fraction that user
i(m) needs to satisfy its session rate requirement isti(m) =
ri(m)

xi(m)
. During the time fractionti(m), the power consumption

of the active useri(m) is
exp

(xi(m)
w

)

−1

θGi(m)C(m)

(

σ2 + q(m)
)

+α. All
other users in cellC(m) remain in idle state duringti(m). The
power consumption of all idle users during the time fraction
ti(m) is (|A(m)| − 1)β. If 1−

∑

i∈A(m)

ri(m)

xi(m)
> 0, then all user-

s will remain idle during the time fraction of1−
∑

i∈A(m)

ri(m)

xi(m)
,

with the total power consumption of|A(m)|β. The intra-cell
average power minimization problem can be formulated as
follows:

Problem: Intra-Cell Average Power Minimization :

minimize
∑

i(m)∈A(m)

ri(m)

xi(m)

(

exp
(xi(m)

w

)

− 1

θGi(m)C(m)

(

σ2 + q(m)
)

+ α+ (|A(m)| − 1)β

)

+



1−
∑

i∈A(m)

ri(m)

xi(m)



 |A(m)|β

subject to
∑

i(m)∈A(m)

ri(m)

xi(m)
≤ 1

variablesxi(m) ≥ 0, ∀i(m) ∈ A(m).

(14)

The objective in (14) is to minimize the total average power
consumptions of all users in cellC(m) during the unit time
frame. Since we consider uplink transmissions, the base station
is the common receiver for all the users inA(m). Thus, the
inter-cell interference power at the base station (i.e.,q(m)) is
the same for every user. The constraint in (14) states that the
total active time fraction is no larger than the frame length.

Problem (14) can be shown to be equivalent to,

minimize
∑

i(m)∈A(m)

ri(m)

xi(m)

(

exp
(xi(m)

w

)

− 1

θGi(m)C(m)

(

σ2 + q(m)
)

+ α− β

)

subject to
∑

i(m)∈A(m)

ri(m)

xi(m)
≤ 1

variables xi(m) ≥ 0, ∀i(m) ∈ A(m).

(15)

If we change the variablexi(m) to the time fraction variable
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ti(m) =
ri(m)

xi(m)
, Problem (15) is further equivalent to,

minimize
∑

i(m)∈A(m)

ti(m)





exp
(

ri(m)

wti(m)

)

− 1

θGi(m)C(m)

(

σ2 + q(m)
)

+ α− β

)

subject to
∑

i(m)∈A(m)

ti(m) ≤ 1

variables ti(m) ≥ 0, ∀i(m) ∈ A(m).

(16)

The second derivative of the objective function in (16) with
respect to variableti(m) is

(

σ2 + q(m)
)

r2i(m)

θGi(m)C(m)w2t3
i(m)

exp

(

ri(m)

wti(m)

)

,

which is always positive. So the objective function in (16) is
convex. The constraints in (16) are linear constraints. There-
fore, Problem (16) is a convex optimization problem. The opti-
mal instantaneous ratex∗

i(m) (or equivalently the optimal time
fraction t∗i(m)) of the intra-cell power minimization problem
in general depends on the inter-cell interference powerq(m).
To simplify notation, letδ = α− β.

Next we show that the optimal solutions to the intra-cell
power minimization problem and the inter-cell interference
power can be decoupled ifδ ≤ 0.

C. Decoupling Property Whenδ ≤ 0

If δ ≤ 0, the idling powerβ is no smaller than the circuit
powerα. Then we have the following theorem. In addition,
the theorem is also valid when both the circuit power and the
idling power are negligible (i.e.,β ≈ α ≈ 0).

Theorem 1:If δ ≤ 0, the optimal instantaneous transmis-
sion rate solutions, the optimal time fractions, and the optimal
target SINRs of the intra-cell power minimization problem
(15) (i.e., x∗

i(m), t∗
i(m), and γ∗

i(m) for all i(m) ∈ A(m))
are independent of the inter-cell interference power level, the
circuit power, and the idling power.

Proof: The first order derivative of the objective function
in (16) with respect to variableti(m) is

σ2 + q(m)

θGi(m)C(m)

(

−
ri(m)

wti(m)
exp

(

ri(m)

wti(m)

)

+

exp

(

ri(m)

wti(m)

)

− 1

)

+ δ. (17)

The first part of (17) (exceptδ) is always negative when
0 ≤ ti(m) ≤ 1. This can be easily shown if we letui(m) =
ri(m)

wti(m)
. The first part of (17) then becomes

σ2 + q(m)

θGi(m)C(m)

(

−ui(m) exp
(

ui(m)

)

+ exp
(

ui(m)

)

− 1
)

. (18)

The first order derivative of (18) with respect toui(m) is
σ2+q(m)

θGi(m)C(m)

(

−ui(m) exp
(

ui(m)

))

, which is negative for any
positiveui(m). So (18) is a monotonically decreasing function
of ui(m). When ui(m) = 0, (18) equals zero. So (18) is

negative for any positiveui(m). When 0 ≤ ti(m) ≤ 1, we
haveui(m) ≥

ri(m)

w
. So the first part of (17) is always negative

when0 ≤ ti(m) ≤ 1.
Therefore, whenδ ≤ 0, (17) is always negative. So the

object function in (16) is a monotonically decreasing function
of the transmission time fractionti(m). As a result, the optimal
solution to Problem (16) is achieved when the inequality
constraint is tight, i.e.,

∑

i(m)∈A(m)

ti(m) = 1. In this case,

minimizing

∑

i(m)∈A(m)

ti(m)





exp
(

ri(m)

w·ti(m)

)

− 1

θGi(m)C(m)

(

σ2 + q(m)
)

+ δ





is equivalent to minimizing

∑

i(m)∈A(m)

ti(m)





exp
(

ri(m)

w·ti(m)

)

− 1

θGi(m)C(m)

(

σ2 + q(m)
)



 .

Furthermore,σ2 + q(m) becomes a common scaling factor in
the objective function and thus can be removed. Therefore,
Problem (16) is equivalent to a simplified formulation where
q(m) andδ can be removed:

minimize
∑

i(m)∈A(m)

ti(m)





exp
(

ri(m)

w·ti(m)

)

− 1

Gi(m)C(m)





subject to
∑

i(m)∈A(m)

ti(m) = 1

variables ti(m) ≥ 0.

(19)

This completes the proof.
The physical meaning of Theorem 1 is that ifδ ≤ 0 (i.e.,

the idle power consumption is no less than the circuit power
consumption), the users in the system will make use of all
the time resource for transmissions in order to minimize the
system power consumption. When the whole time frame is
utilized, the interference power at the base station is a common
influence that affects all the users in the cell, which does
not affect the time fraction allocation among the users in
the system. Theorem 1 will be referred to the “decoupling
property” for δ ≤ 0, which decouples the intra-cell average
power optimization from the inter-cell power control.

IV. T HE DSP ALGORITHM

Theorem 1 motivates us to propose an algorithm, called
Decomposed Scheduling and Power control (DSP), to achieve
energy-efficient transmissions in a multi-cell system. Different
values ofδ will lead to different executions in the algorithm.

A. DSP Algorithm Whenδ ≤ 0

Because of the decoupling property whenδ ≤ 0, we will
optimize the average power consumption in two separate steps:

• Step 1 (intra-cell average power minimization): Each cell
C(m) solves Problem (19) to determine the optimal time
fraction, the optimal instantaneous rate, and the optimal
target SINR of each user inA(m).
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• Step 2 (inter-cell power control): Given the optimal target
SINRs of the users in each cell, we can get the optimal
target SINR vector for the users that are active simulta-
neously (i.e., in each setSk). Then we will compute the
component-wise minimum power solution that satisfies
the target SINR vector.

The flowchart of the DSP algorithm for the caseδ ≤ 0 is
shown in Fig. 1.

Step 1: Solve the convex optimization (16) within each cell 

using the Lagrangian method:

1) Compute the optimal Lagrangian multiplier

with Newton’s method;

2) Calculate the optimal time fraction:

3) Calculate the optimal instantaneous rate:

4) Calculate the optimal target SINR:
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Step 2: Determine transmit power cross multiple cells:

1)Determine all the concurrent transmission sets 

in a frame                           and their active

fractions of time                            ;

2) For each set     , calculate the component-wise

minimum transmit power vector
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Fig. 1. Flowchart of the DSP method for the caseδ ≤ 0

In Step 1, each cellC(m) solves the convex optimization
problem (19) using the Lagrangian method. Letϕ denote the
Lagrangian multiplier of the constraint in (19). The Lagrangian
function is

L (t, ϕ) =
∑

i(m)∈A(m)

ti(m)





exp
(

ri(m)

w·ti(m)

)

− 1

Gi(m)C(m)





+ ϕ





∑

i(m)∈A(m)

ti(m) − 1



 .

Since Problem (19) is convex, the necessary and sufficient
conditions for an optimal solution are the KKT conditions:

∇tL (t, ϕ) = 0 and ϕ





∑

i(m)∈A(m)

ti(m) − 1



 = 0.

From∇tL (t, ϕ) = 0, we have

ϕ∗ =
1

Gi(m)C(m)

(

exp

(

ri(m)

wt∗
i(m)

)(

ri(m)

wt∗
i(m)

− 1

)

+ 1

)

,

(20)
whereϕ∗ is the optimal Lagrange multiplier andt∗i(m) is the
optimal time fraction solution to (19). Given the parameters of
ri(m), Gi(m)C(m), andw, the optimal Lagrange multiplierϕ∗

can be computed by the Newton’s method, which guarantees
superlinear convergence (faster than exponential) [21]. After
obtainingϕ∗, the optimal time fractiont∗i(m) can be calculated
by solving (20). An efficient way to solve (20) is to tabulate
the LambertW function [22], which is defined as

W (y) exp (W (y)) = y.

Thent∗
i(m) is given by

t∗i(m) =
ri(m)

w

(

W

(

ϕ∗Gi(m)C(m) − 1

e

)

+ 1

)−1

. (21)

The optimal instantaneous rate solutionx∗
i(m) is:

x∗
i(m) =

ri(m)

t∗
i(m)

=

(

W

(

ϕ∗Gi(m)C(m) − 1

e

)

+ 1

)

w. (22)

Given the instantaneous rate solutionx∗
i(m), the target SINR

γ∗
i(m) then can be determined by equation (10).
In Step2, optimal power control is performed across mul-

tiple cells to determine the optimal transmit powers for the
users in each cell. We have obtained the active time fraction
t∗
i(m), the instantaneous ratex∗

i(m), and the target SINRγ∗
i(m)

of each user in each cell. Because the scheduling order in each
cell is determined by its arrival order, we can determine allthe
concurrent transmission sets{Sk, 1 ≤ k ≤ K} and their active
fractions of time{tk, 1 ≤ k ≤ K} in the frame. According to
Proposition 1, we can compute the component-wise minimum
transmit power solutions of each setSk that achieve the target
SINR vectorγ∗

Sk
as in (7).

B. DSP Algorithm Whenδ > 0

When δ > 0, the circuit power is greater than the idling
power, which is more likely to happen in practice [3]. The
intra-cell power minimization problem forδ > 0 is given in
(16). The optimal time fraction and the optimal instantaneous
rate solution to (16) aredependenton the inter-cell interference
powerq(m). This motivates us to use an iterative method to
minimize the energy consumption in the multi-cell network.
At the beginning of each iteration, we replaceq(m) with the
average interference powerq̂(m) obtained from the previous
iteration for every cellC(m). For the first iteration, the
estimated interference powerq̂(m) is the averaged interference
power of the previous frame.

The flowchart of the DSP algorithm for the case ofδ >
0 is shown in Fig. 2. It involves an iteration between two
steps. In Step 1, each cellC(m) solves Problem (16) using
the Lagrangian method, whereq(m) is replaced bŷq(m). The
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Step 2: Determine transmit power cross multiple cells:
1)Determine all the concurrent transmission sets in a frame

, and their active fractions of time                 ;
2) For each set     , calculate the component-wise minimum 

transmit power vector

3) Calculate the interference power vector

4) Calculate the total power consumption in the current iteration:

5) Update the estimated average interference power:
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which   is replaced by          using the Lagrangian method;
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2) Calculate the optimal time fraction:
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Fig. 2. Flowchart of the DSP method whenδ > 0

Lagrangian function of (16) is given by

L (t, ϕ) =
∑

i(m)∈A(m)

ti(m)





exp
(

ri(m)

w·ti(m)

)

− 1

θGi(m)C(m)

(

σ2 + q̂(m)
)

+ δ

)

+ ϕ





∑

i(m)∈A(m)

ti(m) − 1



 .

Similarly, we use the KKT conditions to solve formulation
(16). Compared with (20), (21), and (22), the optimal Lagrange
multiplier ϕ∗, the optimal time fractiont∗

i(m), and the optimal
instantaneous ratex∗

i(m) under the case ofδ > 0 are modified

to

ϕ∗ =
σ2 + q̂(m)

θGi(m)C(m)

(

exp

(

ri(m)

wt∗
i(m)

)(

ri(m)

wt∗
i(m)

− 1

)

+ 1

)

−δ,

(23)

t∗i(m) =
ri(m)

w
·

(

W

(

(ϕ∗ + δ) θGi(m)C(m) −
(

σ2 + q̂(m)
)

e (σ2 + q̂(m))

)

+ 1

)−1

,

(24)

and

x∗
i(m) =

ri(m)

t∗
i(m)

=

(

W

(

(ϕ∗ + δ) θGi(m)C(m) −
(

σ2 + q̂(m)
)

e (σ2 + q̂(m))

)

+ 1

)

w.

(25)

In Step 2, given the active time fractiont∗
i(m), the instanta-

neous ratex∗
i(m), and the target SINRγ∗

i(m) obtained in step
1, the concurrent transmission sets{Sk, 1 ≤ k ≤ K} and their
active fractions of time{tk, 1 ≤ k ≤ K} are determined. The
transmit power vectorpSk

and the interference power vector
qSk

for each setSk can be determined according to equations
(7) and (9), respectively. The total power consumption in the
current iteration is computed by

K
∑

k=1

tk





M
∑

m=1





∑

i(m)∈A(m)

(

(1− zi(m)(k))β + zi(m)(k)

(

α+
pi(m)(k)

θ

))

))

, (26)

wherezi(m)(k) (defined in (12)) denotes whether useri(m)
is active in setSk, and pi(m)(k) is the mth element in the
transmit power vectorpSk

.
We use the averaged interference power vector in the current

frame to serve as the estimate interference power in the next
iteration, which is given by

q̂ =

K
∑

k=1

tkqSk
. (27)

The mth element in vector̂q is the averaged interference
power experienced by the BS in cellC(m), q̂(m). Notice
that in each iteration of the DSP algorithm, the total power
consumption is compared with last iteration, and the next
iteration starts if the total power consumption is reduced by
more than or equal to a percentage thresholdε ∈ (0, 1). If the
improvement of the total power consumptions is less thanε,
the DSP algorithm terminates. The total power consumption is
monotonically decreasing and the DSP algorithm is guaranteed
to converge in a finite number of iterations3.

3The maximum number of iterations is upper bounded bylogε

(

Pmin
P1

)

,
whereP1 is the total power consumption in the first iteration andPmin is
the minimum total power consumption in the system.
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C
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C C

Fig. 3. A multi-cell network with7 cells operated on the same channel
(the frequency reuse factor is 3), and there are23 users uniformly distributed
in each cell. The red circles are the base stations and the small blue circles
are the users. Here we only show the users which transmit on one particular
channel.

V. SIMULATION RESULTS

We carry out extensive simulations to evaluate the perfor-
mance of the proposed DSP algorithm. We simulate a multi-
cell network with a frequency reuse factor of3, i.e., one of
every 3 cells use the same channel. The network topology
is shown in Fig. 3. There are a total of7 cells using the
same channel, and the radius of each cell is300 m. The users
are uniformly distributed in each cell. For a given number of
users, we investigate100 sets of random user positions and
present the averaged results. The session rate requirementof
each user is70 kbps (48.52 knats/second). The bandwidth is
1 MHz. The frame length is normalized to be1 second. The
maximum output power is27.5 dBm. The drain efficiency is
0.2. The noise power density is−174 dBm/Hz. The power
related parameters are cited from [13], [16]. We adopt the
distance-based path loss model with a path loss exponent of
4.

A. Power Consumption Improvement

We evaluate the performance of the DSP algorithm proposed
for both the two cases whereδ ≤ 0 and δ > 0. For δ ≤ 0,
we only consider the transmit power consumption and neglect
the circuit power and the idling power consumption. Then
the algorithm in Section IV-A is used. Forδ > 0, the idling
power and the circuit power are set as25 mW and30 mW,
respectively, and therefore the algorithm in Section IV-B is
used. The improvement thresholdε is set as0.001%.

We compare the power consumption performances of the
following three transmission policies:

1) Maximum power transmission: each user transmits with
the same maximum transmit power.
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Fig. 4. Transmit power consumptions,δ = 0 and the algorithm in Section
IV-A is used. The number of users in each cell ranges from2 to 23.

2) Single-EOT: the Single-cell Energy Optimal Transmis-
sion policy proposed in [13]4.

3) DSP: Decomposed Scheduling and Power control pro-
posed in this paper.

Figure 4 shows the system power consumptions of the above
three algorithms as a function of the number of users in each
cell when only the transmit power consumption is considered.
Figure 5 shows the system total power consumptions including
the transmit power, the circuit power, and the idling power.
As expected, DSP outperforms single-EOT, which in turn
outperforms the maximum transmit power policy in both Fig.
4 and Fig. 5. The system power consumptions of the Single-
EOT and DSP algorithms increase more slowly as the number
of users increases. Because the connection duration of a real
time session is the same among these three algorithms, so
the system power reduction ratio is equivalent to the system
energy reduction ratio. For all simulation settings (i.e.,the
number of users per cell ranges from 2 to 23), compared
with the maximum transmit power policy, DSP achieves a
power/energy reduction of more than74% and 70% in Fig.
4 and Fig. 5, respectively. The energy saving benefits become
more significant when only the transmit power consumption
is considered.

In single-EOT, the BS trades off energy consumption and
transmission time from a single cell’s perspective. However,
since BSs of different cells do not cooperate in single-
EOT, the power saving is still limited due to conservative
estimation of the inter-cell interferences. The DSP algorithm

4Reference [13] considered an isolated single cell network,where the inter-
cell interference power is0. Here we consider multi-cell network extension.
In order to make sure the target transmission rate can be achieved when the
actual interference power is unknown, we assume the worst case inter-cell
interference power. In this case, the BS assumes that the users in the adjacent
cells use maximum transmit power, and the worst case interference distance
is twice of the cell radius.



10

5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
4

the number of users in each cell

sy
st

em
 a

ve
ra

ge
 p

ow
er

 c
on

su
m

pt
io

n 
(m

W
)

maximum power transmission
Single−EOT
DSP

Fig. 5. System total power consumptions,δ > 0 and the algorithm in Section
IV-B is used. The number of users in each cell ranges from2 to 23.

combines the intra-cell average power minimization with inter-
cell power control. As a result, the system power/energy
consumption reduction ratio can be further improved compared
with the Single-EOT algorithm: for all the simulated numbers
of users per cell, DSP algorithm achieves a further system
power/energy reduction of more than65% and50% in Fig. 4
and Fig. 5, respectively.

B. Inter-cell Interference Level

We next investigate the interference power levels of the
DSP algorithm whenδ > 0. Specifically, we focus on the
interference power at the base station of the central cellC(1)
in the network topology in Fig. 3.

Figure 6 shows the average interference power as a function
of the number of users in each cell. It is clear that DSP out-
performs single-EOT, which in turn outperforms the maximum
transmit power policy. The maximum transmit power policy
not only consumes a large system power consumption but
also generates a large interference power at the base station.
Compared with the maximum transmit power policy, DSP
achieves an interference power reduction of more than35%
for all the simulated number of users per cell. DSP leads
to a “win-win” situation: it reduces both the transmit power
and the inter-cell interference. Furthermore, we find that there
is a tradeoff between the interference power levels and the
system work load in both the Single-EOT and DSP algorithms.
The interference power levels of the Single-EOT and DSP
increase as the number of users increases. When each cell has
a small number of users, each user has more time to transmit
and thus the inter-cell interference powers can be reduced
significantly. However, in the maximum transmit power policy,
the interference power levels are similar as the number of users
changes.

We further investigate how the interference power changes
over time. Figure 7 exhibits the interference power levels
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Fig. 6. Averaged interference power at the base station of the center cell
C(1), where the number of users in each cell ranges from2 to 23.

of a sample network with23 users uniformly distributed in
each cell under the maximum transmit power policy and the
DSP algorithm. The x-axis represents the time within a single
frame. The y-axis is the interference power at the base station
of cell C(1). Figure 7 shows that the interference power at
the base station fluctuates a lot in the maximum transmit
power policy; however the interference power remains roughly
constant within a time frame in the DSP algorithm.

Specifically, to measure the fluctuation of the interference
power, we examine the coefficient of variation. Given the inter-
ference power vector that contains all the interference powers
at the base station ofC(1) within a time duration of one frame,
the coefficient of variation is defined by the ratio between
the standard deviation and the mean of the interference. A
large coefficient of variation indicates a large fluctuationof
the interference power within the frame. Quantitatively, the
coefficient of variation of the interference power in Fig. 7
under the maximum transmit power policy is0.1316. Under
the DSP algorithm, the coefficient of variation is reduced to
0.0146. This is because under the maximum transmit power
policy, each user in the adjacent cells (C(2) to C(7)) uses the
same transmit power. The interference power at base station
of C(1) heavily depends on the locations of the active users in
cellsC(2) toC(7). If a user is at the cell boundary that is close
to the base station ofC(1), it will generate a large interference.
In the DSP algorithm, after doing single-cell optimization,
the user at the cell boundary is allocated a larger fraction
of time resource so that its instantaneous transmission rate
requirement can be reduced. Therefore, the transmit power
of the cell-boundary user can be reduced, which causes less
interference to the base station of cellC(1).

Table II shows the averaged coefficient of variation when
the number of users in each cell changes ranges from2 to 23.
We find that for all the simulated numbers of users per cell,
the averaged coefficients of variation of the DSP algorithm is
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TABLE II
THE AVERAGED COEFFICIENT OFVARIATION OF THE INTERFERENCEPOWER AT THE BASE STATION OF CELL C(1)

n = 2 n = 5 n = 8 n = 11 n = 14 n = 17 n = 20 n = 23

maximum power transmission 0.1074 0.1105 0.1198 0.1303 0.1331 0.1254 0.1276 0.1248

DSP algorithm 0.0014 0.0024 0.0037 0.0058 0.0080 0.0103 0.0132 0.0161
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Fig. 7. The fluctuation of the interference power at the base station of the
center cellC(1) within one time frame.

very small, i.e., the interference power fluctuates very little.
These results verify our constant interference assumption,
which was the basis for the decomposition method proposed
in this paper. The DSP algorithm has the effect of smoothing
out the interference power received at the base stations. This
observation further indicates that the scheduling order ofthe
users in each cell is not important in the DSP algorithm.
Our DSP algorithm can alleviate the combinatorial part in
formulation (13), which is the most challenging part in solving
the joint power control, rate control, and scheduling problem.

C. Convergence

Whenδ > 0, the DSP algorithm involves iterations between
two alternative steps. The total power consumption is reduced
in each iteration. The DSP algorithms terminates if the im-
provement in the current iteration is less than a percentage
threshold. Figure 8 shows the number of iterations that the
DSP algorithm needs for convergence. For each given number
of links, we investigate 200 random networks and present both
the maximum numbers and the average numbers of iterations
of the DSP algorithm. We find that for all the simulated
networks with different number of users per cell, the average
number of iterations for DSP to converge is around 3. The
maximum number of iterations of the DSP algorithm is no
larger than 8. In Section IV-B, we show that the DSP algorithm
is guaranteed to converge. Figure 8 further indicates that the
DSP algorithm converges very fast.
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Fig. 8. The maximum and average numbers of iterations for theDSP
algorithm (δ > 0) to converge.

VI. FUTURE WORK

In this section, we will discuss two possible future research
directions: the first one is the energy conservation in cellular
networks that supportmobility; the second one is the energy
conservation problem in the wireless networks that support
non-real-timeapplications.

When users are moving, their channels are often fast time-
varying. The power solutions of the DSP algorithm may not
satisfy the users’ target SINR requirements, since the channel
gains may have been changed before the algorithm converges.
One possible solution is to set an SINR margin to combat
the negative impact of mobility [23], i.e., increase the target
SINR by a certain amount. As a result, although the channel
gains may have been changed, the users transmission rate
requirements can still be satisfied if the SINR margin is
sufficiently large. For example, a margin of 3 dB is reserved for
up-link transmissions inmobileWiMAX assuming a frequency
reuse factor of 3 [24]. It is clear that there is a trade-
off between the SINR margin and the energy efficiency: a
small SINR margin may not guarantee the mobile users’ QoS
requirements; a large SINR margin may lead to unnecessary
waste of energy consumptions. Furthermore, the optimization
of the SINR margin is affected by several other factors, e.g.,
the moving speeds of the mobile users, the frequency reuse
factor, and the frame length. The energy-efficient transmission
in mobile multi-cell networks while providing QoS guarantees
is an interesting topic for further study.

This paper focuses on the cellular networks that support
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real-time application sessions (video/ voice sessions). The
extension to the dynamic systems that supportnon-real-time
sessions (e.g., file transfers) is an interesting yet challeng-
ing topic. The real-time sessions have a special feature: the
connection duration of a real-time session is independen-
t of the allocated network resource as long as its target
rate requirement is satisfied; otherwise, the session may be
dropped. However,non-real-timesessions are delay-tolerant.
The holding time of a non-real-time session depends on the
rate and power allocation policy. For example, allocating a
lower transmission rate to a file transfer session will keep
the corresponding user staying longer in the system. The
stationary distribution of the number of users depends heavily
on the rate and power control allocations. In addition, the
QoS metric of non-real-time sessions is less stringent than
the real-time sessions, and thus the system constraints are
different. Therefore, the energy-conservation problem for non-
real-time sessions requires different formulation and solution
techniques.

VII. C ONCLUSION

In this paper, we study the problem of energy conservation
of terminals in a multi-cell TDMA network supporting bursty
real-time sessions. The associated optimization problem in-
volves joint scheduling, rate control, and power control.

We propose a method that decomposes the overall prob-
lem into two sub-problems: intra-cell energy optimization
and inter-cell power control. This decomposition method is
guaranteed to find a feasible solution, albeit not an optimal
one. The decomposition is motivated and made simple by the
following observations:

1) The original optimization problem is too complicated to
solve directly online.

2) In cellular networks, the cells using the same frequency
band are usually geographically separated by a distance.
Interference is a strong function of distance when the
distance is small, but a weak function of distance when
the distance is large. Furthermore, after doing intra-cell
averaged power minimization, the base station trades off
energy consumption with transmission time. This will
reduce the interference power generated by the cell-
boundary users. Thus, we could make the approximation
that the interference is constant when we make intra-cell
time fraction allocations to the users within a cell.

3) If the idle power is no less than the circuit power, or
both are negligible, then there is a “decoupling prop-
erty”: the energy-optimal time allocations to individual
users within each cell are independent of the inter-cell
interference (under the assumption that the interference
stays constant throughput a frame).

4) If the idle power is less than the circuit power, the sub-
problems are coupled. We then need to iteratively solve
the two sub-problems until convergence.
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