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Abstract

This paper analyzes the performance of a class of asym-
metric packet-switch modules with channel grouping.
The motivation for the study of these switch modules
is that they are the key building blocks in large mul-
tistage switch architectures. The switch module con-
sidered has n inputs and m outputs. A packet des-
tined for a particular output address (out of g) needs
to access only one of the r available physical output
ports; m = gr. Input-buffered, output-buffered, and
unbuffered switch modules are studied. Owur results
show that increasing the number of output ports per
output address () can significantly improve the perfor-
mance of buffered as well as unbuffered switch modules.
For acceptable performance, the difference in through-
put between buffered and unbuffered switch modules is
considerable. For buffered switch modules, an interest-
ing observation is that although output-buffered switch
modules have significantly better delay performance
than input-buffered switch modules when n = gr, the
performance difference is diminished as we deviate from
this switch dimensions.

I. Introduction

This paper considers the performance of the class of
asymmetric packet switch modules illustrated in Fig. 1.
There are hs input ports consisting of ~ input groups
of s input ports each, and gr output ports of g output
groups of r output ports each. The incentive for study-
ing asymmetric switch modules with channel grouping
is that one can construct a large switch architecture out
of stages of such switch modules. To achieve acceptable
performance with the architecture, it is necessary to
choose the various parameters of the basic switch mod-
ules properly. The objective of this paper is to quantify
the performance of these switch modules as a function
of the switch dimensions and designs.

Before proceeding further, we give three examples of
switch architectures in Fig. 2, 3 and 4 which make use
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Figure 1: The asymmetric switch module with channel
grouping.

of the class of switch modules considered here. Figure
2 is the modular nonblocking switch architecture pro-
posed by Lee [1]. The first stage consists of Batcher-
banyan switch modules of dimensions n x nk (i.e., with
respect to the switch module in Fig. 1, s,7 = 1, h — n
and ¢ — nk). The second-stage switch modules
are statistical multiplexers of dimensions k£ x 1. Fig-
ure 3 is a 3-stage switch architecture proposed in (2].
The dimensions of the first-stage, second-stage, and
third-stage switch modules are n x m (m > n), I x I',
and m' x n' (m' > n'), respectively. Here, a chan-
nel group of r (r') channels interconnects any first-
stage (second-stage) switch module and any second-
stage (third-stage) switch module. The structure is
such that if » and ' were to be 1, there will be one
and only one path between any input and any output.
However, in general 7,7’ > 1, and packets have sev-
eral alternative paths from its input to its destination
output.  Furthermore, if m > n then the traffic in-
ternal to the switch architecture is more “spread-out”
than the traffic on the inputs or the outputs, and this
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Figure 5: The asymmetric switch module with uncor-
related inputs

leads to better performance of the overall switch. Fi-
nally, Fig. 4 is a 3-stage switch architecture [4] that
employs asymmetric switch modules at the two outer
stages, and symmetric switch modules at the middle
stage. There is no channel grouping internally. In all
three schemes, asymmetric switch modules at the first
stage results in internal line expansion which improves
the performance of the overall switch architecture.

Referring to Fig. 1, to the extent that packets at
different input ports within the same group are uncor-
related, the switch module reduces to that shown in
Fig. 5 in which hs — n. This paper focuses on the
structure shown in Fig. 5, assuming any correlations
between packets of different input ports are small and
negligible. An output group [3] corresponds to an out-
put address, and a packet can access any of the 7 output
ports of its output address. In any given time slot, at
most 7 packets can be cleared from a particular output
group, one packet on each output port. Furthermore,
we assume packets are destined for a particular output
group (address) rather than a particular output port.
That is, it does not matter from which output port a
packet exits as long as the output port belongs to the
correct output group. For designs of channel-grouping
switch modules, please refer to Reference [2]. It turns
out that channel-grouping switch modules have smaller
complexity (in terms of switch element counts) than or-
dinary switch modaules of the same dimensions.

- Three buffering schemes are considered: input queue-
ing, output queueing, and packet dropping [5]. With
input queueing, an arriving packet enters a FIFO buffer
on its input and waits for its turn to access its desti-

nation output. With output queueing, a logical FIFO
buffer is allocated to each output group, and arriving
packets destined for this output group are immediately
placed in it. In any given time slot, at most r packets
exit from each output group on the associated r output
ports. With packet dropping, no buffers are provided
for packet queueing. Any packets not cleared in one
time slot are immediately dropped from the system.

For simplicity, we assume homogeneous traffic in our
analyses. Packets arrive at input ports with fixed prob-
ability in a given time slot, and they have equal proba-
bility of being addressed to any output group. Further-
more, there is no correlation between packets arriving
in different time slots or at different inputs.

II. Input Queueing

In this section, the maximum throughput of asym-
metric input-buffered switch modules with channel
grouping is obtained by numerical analysis, and the
mean delay by simulations.

It is well known that head-of-line blocking limits the
maximum throughput of a symmetric input-buffer to
0.586 [6]. The reader is referred to [5] or [6] for a de-

_ scription of head-of-line blocking. Although the maxi-
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mum throughput when n = g, » = 1 and n — oo can be
derived by exact analysis, the problem is not amenable
to exact analysis when r > 1. Nevertheless, a simi-
lar approach as in [6] could be taken to a point where
the solution could be found by numerical analysis. The
same analysis yields the throughput of the switch mod-
ule as a concentrator (n > g) or an expansion network

(n<yg)

To find the maximum throughput, we consider the
situation in which the input queues are saturated so
that one can always find packets in every queue. In
particular, there is always a packet at the head of each
queue, waiting to access its destination. Only after this
packet is cleared can the next packet move to the head
of the queue. Let A;- be the number of packets destined
for output group i that move into the heads of free input
queues in the beginning of the j** time slot; the free
input queues are queues with packets transmitted in
the previous time slot. Let F;_; be the number of free
input queues at the end of the (j — 1)** time slot, i.e.,
Fioi=Y%1, A; Since each new packet is destined for
any output group with equal probability, 4} has the
binomial probabilities

Pr[A;» = k]



At equilibrium, the subscripts can be dropped. As
in [6], it can be shown that lim, 4o Pr[A* = k] =
e Popk /k!, where pg = F/g. To simplify analysis, we
will assume n,g — oo while keeping a fixed value of
g/n. This approximation is valid when n is large (e.g.,
n > 16). The probability generating function (PGF) of
A'is

i k — g~ Po(1=2)

Z 2" Pr[A (2)

Let B‘ be the number of packets that are destined
for output group % at the heads of input queues but
not selected for transmission during the j** time slot.
Specifically,

B; = max(0, Xj — ) (3)

where ) ' .

X; = Bj_; + 4j. (4)
Note that X’ is the backlog for output group 7 at the
beginning of time slot j, and only when there are more
than r packets destined for the same output group will
some packets be withheld from transmission. Following
a standard approach in queueing analysis [7], we obtain

the equilibrium probability generating function

D (-

FICEE

Z")Pr[X* = k]
(5)

where A(z) is given in (2). Differenting Bi(z) with
respect to z and taking the limit as z — 1 (with
L'Hospital’s rule apphed to remove indeterminacies in
the expression for Bi'(1)), we obtain

=1
e : po—r'r—l
Bi=B"(1) =", 6
(1) 2r - po) +ZI_ZK (6)
k=1

where po = A'(1) (i-e., the average number of new pack-
ets destined for output group 7 arriving at the heads of
queues per time slot), and 1and 2,k = 1,...,7—1, are
the r zeros of the numerator of B*(z). It can be shown
by using Rouche’s Theorem (7] that the denominator
of B'(z) contains exactly r zeros with magnitudes less
than or equal to one. Based on the fact that B*(z) must
be analytical for |z| < 1 (since it is a PGF), these r ze-
ros must also be the r zeros of the numerator. Thus,
2k, k = 1,...,7—1, can be found numerically by solving
the following (r — 1) complex equations

i 1 2k7|' L. 2}07['
AY(z)" —z|cos—- +1isin-—-
T T

1
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k=1,...,r—1 (M
Note that z; is a function of py because Al(z) is a
function of pp. Now, by symmetry,

(8)

Equating (8) with (6), we obtain a equation governing
0o and 7. In general, this equation is not in closed form
because z in turns depends on pg through (7). But the
correct po can be found by numerical iteration starting
from an initial guess. The maximum throughput per
input is related to py as follows:

0" = Zpo. (9)
n

For r = 1, p* can be expressed in a closed form

o= (2 +1) —\/(3)2“.
n n
Table 1 lists the maximum throughput per input for
various values of 7 and g/n. The column in which
g/n = 1 corresponds to special cases studied by [6]
and [8]. For a given r, the maximum throughput
increases with g/n because the load on each output
group decreases with g/n. For a given g/n, the maxi-
mum throughput increases with = because each output
group has more output ports for clearing packets. This
is analogous to increasing the number of servers in a
queueing system. As shown in the table, when g/nis
fairly large (say, g/n > 4), there is less incentive to
use channel grouping to increase the throughput, be-
cause the throughput is already close to 1. When g/n
is small (say, g/n < 2), the use of channel grouping can
increase the throughput substantially. For concentra-
tors (g/n < 1), increasing the number of output ports
per output address from 1 to 2 approximately doubles
the maximum throughput.

(10)

Table 2 lists the maximum throughput as a func-
tion of the line expansion ratio (the ratio of the num-
ber of input ports to the number of output ports),
m/n = gr/n. Notice that for a given line expansion ra-
tio, the maximum throughput increases with r. Chan-
nel grouping has a stronger effect on throughput for
smaller m/n than for larger m/n. This is because for
lazge m/n, 7 = 1, the line expansion has already alle-
viated much of the throughput limitation due to head-
of-line blocking.

As an example of application of the above results,
consider the 2-stage switch architecture in Fig. 2. Ac-
cording to our results, the expanded Batcher-banyan



Table 1: Maximum throughput for an input queue at the first stage with ¢g/n kept constant while g,n — oo

g

’ n

-3—15 1—16 % % % 1 2 4 8 16 32
1] 0031 0061 0117 0219 038 058 0764 0877 0938 0969 0.984
2| 0061 0.121 0233 0426 0686 0.885 0966 0991 0998 0999  1.000
410123 0241 0457 0768 095 099 1.000 1.000 1.000 1.000
8| 0245 0476 0831 0991 1.000 1.000
16 | 0487 0878 099  1.000
32 | 0912 1.000  1.000

Table 2: Maximum throughput for an input queue at
the first stage with m/n (gr/n) kept constant while
m,n — oo.

m
r n
1 2 4 8 16 32
1]0.58 0.764 0.877 0.938 0.969 0.984
210.68 0.885 0.966 0.991 0.998 0.999
410.768 0.959 0.996 1.000 1.000 1.000
810.831 0.991 1.000
16 | 0.878 0.999
3210912 1.000
64 | 0.937 .
128 1 0.955
256 | 0.968
512 | 0.978
1024 | 0.984

switch modules would have virtually no throughput
limitations if N/n > 32.

Analysis of the mean delay of input-buffered switch
modules is difficult, and therefore simulation is used
here. Whereas the maximum throughput of input-
buffered switch modules is insensitive to the particular
contention scheme adopted (as long as no head-of-line
packets are withheld for clearance when there are free
destination output ports), the mean delay does depend
on the contention scheme. One can consider each input
queue as a general service FIFO single-server queue,
with the service time being the time spent waiting at
the head of queue . If the service time and the arrival
rate during service are independent, it can be shown
that the mean delay is

<, PS(S—-1)

B354+ 1 pVar[S]
2(1 — pS)

2(1-pS)’

(11)

where S is the time a packet spends as the head of its
queue (i.e., service time) and p is the offered load, or
the probability a packet will arrive on a particular in-
put in a given time slot. Thus, D depends on the first
and second moments of S, which in turn depends on
the contention scheme used to arbitrate packets des-
tined for the same output groups. Note that although
(11) applies to the random selection policy described
in [6], it is is not applicable for the longest queue selec-
tion policy in [6], since the service time would then be
correlated to the arrival rate during the service.

Arbitration schemes that clear a packet as long as
there is a head-of-queue packet would have the same

S. Among these schemes, variations exist as to which
packets to clear when there are more than r pack-
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ets contending for the sam output group. Among the
schemes described by (11), the contention scheme that
yields the theoretical minimum mean delay is the one
with the minimum Var[S]. To achieve this, our sim-
ulation clears the packets that have spent the longest
time at the heads of queues. Note that the oldest head-
of-queue packets are not necessary the oldest packets
within the system, since a packet may have been at the
head of queue for a long time, but did not spend much
time before reaching the head of queue.

Figure 6 shows the graphs of the mean delay versus
the offered load for various values of r and g, fixing n
at 32. The number of packets collected for each data
point is 5000. Simulation results show that for a given
r and g/n, but n > 32, the mean delay is closely ap-
proximated by the results of n = 32. Comparison of the
results with [6] shows that, for g/n = 1, the mean delay
of the oldest head-of-line policy lies between the mean
delays of the random and the longest queue selection
policies.

III. Output Queueing

For output queueing switch modules, we assume
there is a single FIFO queue for an output group. Ar-
riving packets destined for a given output group are im-
mediately placed on the corresponding output queue.

To find the mean delay at the outputs, an approach
similar to that used in [6] is taken. Again, let p be
the probability that a packet will arrive on a particular
input in any given time slot. Let A* be the number of
packet arrivals at a particular output group : during a
time slot. Then, A* has the probability distribution as
in (20). The corresponding PGF's are

Ai(z) = (1—§+z§>n. (12)

Let Q; denote the number of packets in a particular
output queue at the end of the j** time slot, A;- denote
the number of packet arrivals during the j** time slot,
and X denote the number of packets in the output
buffer in the j* time slot. We find that
= max(0, X; —r),

Q; (13)

where

X;:

Qi1 + 45 (14)
Following a standard approach in queueing analysis {7},
we obtain the PGF for the steady-state queue size for

each individual stage
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r—1
S (* - ) Pr(xt = K]
Qi(z) — k=0 -
(l -2 + 22—7> -z
g g

Differenting Q*(z) with respect to z and taking the limit
as z — 1, and using L’Hospital’s rule in the expression
for (@*)'(1), we obtain the mean steady-state queue size

© (15)

2
r(n—-1
Ry 37
Ll 1) =
Q' =(@)() - D iia
2(1—p— k=1

gr
(16)
where z = 1 and 2,k = 1,...,7 — 1, are r zeros of
the numerator of Q(z). Using the same argument as
in Section II, z;,k = 1,...,r — 1, are also the zeros of

the denominator of Q*(z) whose magnitudes are smaller
than 1. They can be found numerically by solving the
following (r — 1) complex equations

2k

)

: 1 2km L.
A'(z)* —z | cos — +isin
T

k=1,...,7~1.

(17)
where A*(z) is given in (12).

Using Q and Little’s Theorem, we obtain the mean
waiting time in terms of time slots at each individual
stage

o @

NG)

Finally, the mean delay time, Dt is simply W' + 1.

(18)

Now, when 7 is large, solving for the roots of (17)
numerically is difficult because of the polynomial is of
very high order. But for a given g/n ratio, we can make
an approximation by letting g,n — oo. Then,

Ai(z) = em1-9)0, (19)

Using this A*(z), the root of (17) can be easily found.

Figure 7 shows the mean delay versus the offered load
for various values of 7 and g, fixing n at 32. The results
obtained by assuming a fixed g/n and n,g — oo closely
follow those presented in the figure.

Comparison of Fig. 6 and Fig. 7 shows that for a fixed
r, the improvement of the output queueing performance
over the input queueing performance increases as g in-
creases until gr = n. Here, we define performance in
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terms of throughput for a given mean-delay bound (say,
mean delay < 2). Beyond gr = n, the improvement be-
comes less distinct. Using the case r = 1 as an exam-
ple, when g = 8, there is not much difference between
input queueing and output queueing. Intuitively, this
is because both input queueing and output queueing
are limited by the few number of output ports, and
that head-of-line blocking is not the main limiting fac-
tor in input queueing switch modules. When ¢ = 32,
however, the difference is rather distinct, since output
queueing is no more limited by line concentration, but
input queueing is still limited by head-of-line blocking.
Increasing g further does not improve the output queue-
ing performance much since the performance is already
near optimum. But the limitation on input queueing
is relaxed because of line expansion. In general, for
a given 7, gr = n is a special case in which there is a
substantial difference between the performance of input
queueing and output queueing.

IV. Packet Dropping

There is no buffer for packet-dropping switch mod-
ules, and whenever there are more than r packets ar-
riving in a time slot, 7 packets are randomly chosen to
clear at the output and the rest are dropped from the
system. Using the notation as in the previous section,
A* has the binomial probabilities

(20)

The packet loss probability or the probability that an ar-
bitrary packet will be dropped from the switch is simply

=k. (21)

Pr[packet loss] = nip Z (k —7) Pr[4’
k=r+1

Figure 8 shows the packet loss probability versus the
offered load for various values of r and g, fixing n at 32.
The results obtained by assuming a fixed g/n and and
n > 32 are closely approximated by those presented in
the figure. Using 107° as the acceptable packet drop-
ping probability, with only 1 port per output address
(r = 1), the figure shows that the packet loss proba-
bility is unacceptably high over a wide range of switch
module parameters: offered load ranging from 0.01 to
1.0, and number of output addresses ranging from 8 to
128. When 7 = 4, there is significant improvement in
the packet loss probability, but g would still have to be
large for offered loads beyond 0.5. In fact, forn =g, r



needs to be at least 8 for the acceptable offered load to
go up to 0.5. Asin buffered switch modules, for a fixed
m/n, performance improves as r increases. Comparing
Fig. 8 with Fig. 6 and Fig. 7, it is not surprising that,
for a given set of g/n and r values, the acceptable of-
fered load for unbuffered switch modules is very much
lowered than for buffered switch modules.

V. Conclusions

This paper has quantified the performance of a class
of n x gr asymmetric packet-switch modules with chan-
rel grouping at the outputs. These switch modules
constitute the building blocks of many larger switch
architectures, and it is important to understand the
performance of the switch modules in order to design
the larger switch properly. Input-buffered, output-
buffered, and unbuffered switch modules have been
studied. The performance of the buffered switch mod-
ules is defined in terms of the throughput for an accept-
able mean delay (say, < 2 time slots), and the the per-
formance of the unbuffered switch modules is defined in
terms of the throughput for an acceptable packet loss
probability (say, < 107%). In general, for a given set of
switch parameters, buffered switch modules have much
better performance than unbuffered switch ‘modules.
For all cases, however, increasing the number of out-
put ports per output address can significantly improve
the performance. For example, for a fixed g/n < 1,
the throughput of input-buffered switch modules is ap-
proximately doubled when we increase the number of
output ports per output from 1 to 2. If we fix the
line expansion ratio (gr/n) instead, the performance
is better for larger ». In other words, decreasing the
number of output addresses while fixing the numbers
of output and input ports improve the performance.
For buffered switch modules, our results show that al-
though output queueing switch modules have signifi-
cantly better performance than input queueing switch
modules when n = gr, the advantage is diminished as
we increase or decrease g while fixing r. Intuitively, for
smaller g, the performance limitation is mainly due to
line concentration (i.e., fewer output ports than input
ports). But this limitation applies to both input and
output queueing switch modules. For larger g, the ef-
fect of head-of-line blocking on input queueing switch
modules is alleviated because of line expansion, and the
performance approaches that of output queueing switch
modules. In short, n = gr is a special case in which the
difference in performance between input queueing and
output queueing is the largest.
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