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Abstract: In this paper, the cluster consensus problem for multiple agents whose state evolution are described by identical linear
models is investigated. In this model, which is generic, every agent only observes relative state information from exactly one
neighbor. Control decisions for each agent are dependent on the observed data and a parameter chosen at an initial time from a
set of possible options. These options are referred to as agent choices. The observation pattern of the agents is summarized by
an interacting graph. The key result of this paper shows that under suitable structural conditions of the interacting graph, there
exists a choice-based distributed control algorithm that enables agents who make the same choices to converge to a common
consensus state, while agents who make different choices will converge to distinct states. In additional to graph topology, the
structural condition also depends on how the choice selections are distributed. For interacting graphs that satisfy the so called
unicyclic property, an explicit characterization of the sets of choice selections that guarantee convergence is presented.
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1 Introduction

The past decade witnessed prolific development in the
study of collective and coordinated behaviors of multiple
agents (see the recent survey papers [1, 2] for details.) Most
of the literature are focused on studying aggregation phe-
nomena of the agents, such as the consensus problems with
leaders [3, 4] or without leaders [5], swarming/flocking
[6, 7], and rendezvous problem [8, 9].

It is common to encounter in biological and engineering
systems interesting scenarios where a group of agents over
time splits into sub-groups. Some obvious examples are:
predator evasion and separated foraging for a flock of birds
or a herd of animals [10], obstacles avoidance [7] or multi-
ple tasks searching for autonomous vehicles, and heteroge-
neous robots sorting [11]. In social networks, people with
different believes or opinions tend to separate into different
sub-groups [12]. These phenomena are commonly labeled as
cluster consensus, or clustering, which refers to the evolution
of a network of agents into a partition of clusters, with all
agents within the same cluster agree upon a common state.

Emerging investigations on clustering can be found in
flocking [11, 13, 14] and consensus/sychronization [15–18]
problems. In [13, 14], the authors presented a swarm aggre-
gation and splitting control scheme where an intermediate-
range Gaussian-type repulsive interaction among agents
could split a cohesive group into several sub-groups. In [11]
segregation of two types of agents is realized by utilizing
differential inter- and intragroup artificial potentials. In con-
sensus/sychronization problems, a basic assumption towards
clustering is that all agents in a cluster have the same in-
degree from other clusters (common inter-cluster coupling
condition). In [15], necessary and sufficient conditions for
group consensus are provided for switching multi-agent net-
works by introducing double-tree-form transformations. The
authors in [16] found two inter-cluster and intra-cluster cou-
pling conditions for networks of nonidentical systems to re-
alize cluster synchronization. In [17] there is a report on
three different mechanisms that lead to clustering of a multi-
agent system: the existence of different self-dynamics, and
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for agents with identical self-dynamics, the presence of de-
lays and the existence of both positive and negative cou-
plings. In addition, networks of agents with nonlinear self-
dynamics [19] or generic linear self-dynamics [18] can be
forced into clusters by pinning control techniques.

For tiny, low cost implementation of an agent or for cases
where stealthiness is a necessity, active communication is
commonly avoided. Hence, there is an emerging interest in
studying control algorithms that call for as less communi-
cation as possible. The authors in [20, 21] interpreted the
complexity of communicating in a control system in terms of
the control energy required, where [21] showed that without
communication, choice actions in a class of bilinear systems
can be implemented at additional control energy cost. In ve-
hicle routing problems [22, 23], tasks can be completed by
multiple cooperative agents without explicit information ex-
change among them. Recently, Baillieul et al [24, 25] tried
to use of the relative motion between robots for information
signaling.

Besides the many attractive benefits in engineering appli-
cations, lack of communication also emerges frequently in
engineering systems and social networks. For example, a
communication may link fail; nodes in a network may not
be fully conscious of the activities of the other nodes; human
society is fraught with situations with no or partial people to
people communication. In most of these scenarios, every
agent may still have an individual option, or choice, and acts
based on it and other observed information. Therefore, there
is a need to study how agents can split into clusters based on
choice and as little inter-agent communication as possible.

In this paper, we consider the clustering phenomenon re-
sulting from distributed choices of interconnected agents in
a network. The only information an agent can obtain comes
from its direct neighbor; no explicit communication chan-
nel exists between any two agents. To reflect this special
information coupling pattern, the underlying network topol-
ogy is assumed to be a directed graph and each agent links
to exactly one other agent. Agents make the same choice
are equipped with the same choice-based control law. Un-
der some structural conditions of the underlying network,
clustering is proved to appear when agents make different



choices. Explicit characterization of the choice selection dis-
tributions that satisfy the structural conditions are presented
under the assumed interacting graph structure.

The structure of this paper is as follows: In section 2, we
present background information from relevant graph theory
and state the problem formulation. In section 3, main results
for cluster consensus are derived and characterization of the
choice selection distributions leading to convergence is pre-
sented. Simulations are conducted in section 4 to verify and
demonstrate our results. Conclusions follow in section 5.

2 Preliminary

2.1 Graph theory
Let G = (V, E ,A) be the topology of a directed graph

(or digraph) with node set V = {v1, . . . , vL} and edge set
E ⊆ V × V . The nodes are indexed by a finite set I =
{1, 2, . . . , L}. A directed edge, or arc, from vi to vj is an
ordered pair of distinct nodes (vi, vj) ∈ E , i, j ∈ I, i 6= j.
The set of neighbors of node i is denoted byNi = {vj ∈ V :
(vj , vi) ∈ E}. A = [aij ] ∈ RL×L is the 0 − 1 adjacency
matrix, i.e., aij = 1 if and only if (vj , vi) ∈ E and aij = 0
otherwise. L = [lij ] ∈ RL×L is the Laplacian of G, where
lii =

∑L
j=1 aij and lij = −aij if i 6= j. A directed path in

G is a sequence vi1 , vi2 , . . . , viK of distinct nodes such that
(vij , vij+1) is an arc of G for j = 1, . . . ,K − 1.

A digraph is (strongly) connected if and only if any two
distinct nodes can be joined by a (directed) path, and a di-
graph is weakly connected if and only if its underlying undi-
rected graph is connected. An unicyclic graph (for exam-
ple, Fig.1) is a weakly connected graph where the number
of nodes equals the number of edges. A directed tree is a
digraph where every node except the root has exactly one
parent. A directed spanning tree of a digraph is a directed
tree formed by graph edges that connects all the nodes of the
digraph. The in-degree of a node in a digraph is the number
of arcs ending on that node ([26]).

Now we give a characterization of unicyclic graphs with
directed edges.

Proposition 1. Let Ḡ = (V̄, Ē ,A) be the topology of a di-
rected graph such that the in-degree of every node is 1. Then,
Ḡ is an unicyclic graph contains exactly one directed cycle
C and directed trees attached to the nodes of C.

Note that there can be several directed trees attached to
the same node in the cycle. Also, it is easily seen that Ḡ has
a directed spanning tree.

Fig. 1: A sample of a directed graph Ḡ.

2.2 Problem formulation
Consider a network consisting of L agents described by

linear dynamic models:

ẋl(t) = Axl(t) +Bul(t), l ∈ I = {1, 2, . . . , L}. (1)

where xl(t) ∈ Rn, ul(t) ∈ Rm are the state and control
of the agent l, respectively, and A ∈ Rn×n is the system
matrix. A graph G = (V, E) is associated with system (1)
such that each agent is regarded as a node and information
flow from agent j to agent l corresponds to a directed edge
(vj , vl) ∈ E . An agent j is said to be a neighbor of l if and
only if (vj , vl) is an edge.

In this paper, we are interested in networks of agents
where no explicit communication is allowed between agents,
owing to reasons such as radio silence, lack of or breakdown
of communication links, etc. So, agents interact by observa-
tion and it is convenient for each of them to observe only one
other agent.

Assumption 1. Every agent has exactly one neighbor, i.e.,
the network of L agents has unicyclic graph topology Ḡ as
described in Proposition 1.

For agents with generic system dynamics A, we only con-
sider stabilizable systems.

Assumption 2. The linear system (A,B) is stabilizable.

Each agent l chooses independently from a choice set la-
beled by Ω := {1, 2, · · · } at the initial time and all agents’
choices remain unchanged during the time period a task.
This choice set is a numeric representation of terms which
can be endowed with specific meanings such as opinions,
beliefs, or physical states of an agent. Denote by integer
il ∈ Ω, the choice outcome (or choice) of agent l. Then, the
definition of cluster consensus can be given as follows:

Definition 1 (choice-based cluster consensus). A network of
agents indexed by I is said to achieve choice-based clus-
ter consensus, if the states of the agents satisfy ∀l, j ∈
I, il, ij ∈ Ω, limt→∞ ‖xl(t) − xj(t)‖ = 0, ∀il = ij , and
limt→∞ ‖(xl(t)− xj(t))‖ > 0, ∀il 6= ij .

Remark 1. The definition differs from those in [15, 17] in
that the number of clusters and the members in each cluster
are not known as a priori due to different possible combi-
nations of all agents’ choices. Also, agents may not go to
the same cluster even when they have made the same choice,
since very limited information is available for each of them.
So, even the agents are separated into several clusters in the
sense of [15, 17], it may not be a choice-based cluster con-
sensus.

For a network ofL ≥ 2 agents with topology Ḡ and choice
set Ω, this paper devotes to separate these agents intoN clus-
ters if there exist N distinct choices, such that each cluster
i, 1 ≤ i ≤ N , consists of li agents who have made the same
choice. So, l1 + · · · + lN = L. Note that N is changeable
according to the number of choices.

As no direct communication is available, agents cannot
exchange their choice information to each other, nor is pos-
sible for agents to stabilize themselves to a selected state,
since only relative information xlj := xl − xj with respect



to its neighboring agent j is available to an arbitrary agent
l. Therefore, the control input of each agent is a function
of its own choice and their relative information, i.e., ul =
f(il, xlj). In this paper, the following distributed control
protocol is proposed: for l = 1, 2 · · ·L, il = 1, 2 · · · , N ,
N ≤ L,

uill (t) = K[xjl(t)− xl(t) + hil ], (2)

where jl is the neighbor of l, K is the controller gain matrix
to be designed, and hil ∈ Rn is a choice based vector such
that hil 6= him ,∀il 6= im, 1 ≤ il, im ≤ N .

3 Main Results

Notations: 1n = [1, 1, . . . , 1]T ∈ Rn. In ∈ Rn×n

is the n-dimensional identity matrix. diag{M1 · · ·Mn}
is the block diagonal matrix constructed from matrices
M1, · · · ,Mn. “⊗” stands for the Kronecker product.

3.1 Cluster consensus for graphs with fixed topology
In this section, we will show that when choices are de-

termined and N choices exist, cluster consensus can be
achieved by protocol (2). Before deriving our main result,
we need the following lemmas.

Lemma 1 ([4, 27]). Ḡ contains a spanning tree, and the
Laplacian matrix LḠ has a simple eigenvalue 0 with corre-
sponding eigenvector 1L, and the real part of other eigenval-
ues is positive. Also, LḠ has a nonnegative left eigenvector
r ∈ RL satisfying rT1L = 1, associated with the eigenvalue
0, i.e., rTLḠ = 0.

Definition 2. A matrix M ∈ Rnl1×nl2 of block matrix form:

M =


M11 M12 · · · M1l2

M21 M22 · · · M2l2
...

...
. . .

...
Ml11 Ml12 · · · Ml1l2


where Mpq ∈ Rn×n, p = 1 · · · l1, q = 1 · · · l2, is said
to have a constant row block-matrix sum C ∈ Rn×n, if∑l2

q=1Mpq = C, ∀p, or M(1l2 ⊗ In) = 1l1 ⊗ C.

Lemma 2. A square matrix M̄ ∈ RnL×nL which is parti-
tioned as:

M̄ =


M̄11 M̄12 · · · M̄1N

M̄21 M̄22 · · · M̄2N

...
...

. . .
...

M̄N1 M̄N2 · · · M̄NN



where M̄ij =


M11 M12 · · · M1lj

M21 M22 · · · M2lj
...

...
. . .

...
Mli1 Mli2 · · · Mlilj

 ∈ Rnli×nlj ,

Mpq ∈ Rn×n, for p = 1 · · · li, q = 1 · · · lj , 1 ≤ i, j ≤ N ,
and l1 + · · · + lN = L. If the matrices M̄ij , 1 ≤ i, j ≤ N ,
have constant row block-matrix sums Pij ∈ Rn×n, and eM̄

is partitioned in the same way as M̄ , then the block matrices
of eM̄ also have constant row block-matrix sums denoted
by Qij ∈ Rn×n for 1 ≤ i, j ≤ N . In addition, let P =
[Pij ]N×N and Q = [Qij ]N×N ; then, Q = eP .

Proof. Denote D̄ = diag{1l1 · · ·1lN } ⊗ In. If M̄ij have
constant row block-matrix sums Pij for all 1 ≤ i, j ≤ N ,
then we have

M̄(diag{1l1 · · ·1lN } ⊗ In) = M̄D̄

=

 M̄11(1l1 ⊗ In) · · · M̄1N (1lN ⊗ In)
...

. . .
...

M̄N1(1l1 ⊗ In) · · · M̄NN (1lN ⊗ In)


=

 1l1 ⊗ P11 · · · 1l1 ⊗ P1N

...
. . .

...
1lN ⊗ PN1 · · · 1lN ⊗ PNN

 = D̄P

This implies M̄kD̄ = D̄P k. It follows that

eM̄ D̄ =(InL + M̄ +
1

2!
M̄2 + · · · )D̄

=D̄ + D̄P +
1

2!
D̄P 2 + · · ·

=D̄eP .

(3)

Partitioning eM̄ = [Φij ]N×N in the same way as M̄ , where
Φij ∈ Rnli×nlj for 1 ≤ i, j ≤ N , and partitioning eP =
[Ψij ]N×N in the same way as P , where Ψij ∈ Rn×n for
1 ≤ i, j ≤ N , we have

eM̄ D̄ =

Φ11(1l1 ⊗ In) · · · Φ1N (1lN ⊗ In)
...

. . .
...

ΦN1(1l1 ⊗ In) · · · ΦNN (1lN ⊗ In)


and

D̄eP =

 1l1 ⊗Ψ11 · · · 1l1 ⊗Ψ1N

...
. . .

...
1lN ⊗ΨN1 · · · 1lN ⊗ΨNN


According to (3), for all integers 1 ≤ i, j ≤ N ,

Φij(1lj ⊗ In) = 1li ⊗Ψij ,

i.e. each block matrix Φij has a constant row block-matrix
sum Ψij . This completes the first part of this lemma. In
addition, it is straightforward to conclude that Ψij = Qij

and eP = Q.

Plugging (2) into (1), one gets for l ∈ I,

ẋl(t) = Axl(t) +BK(xjl(t)− xl(t)) +BKhil . (4)

Constellate the states of these L agents in x(t) :=
[xT1 (t), xT2 (t), . . . , xTL(t)]T , such that for N integers
l1, l2, · · · , lN satisfying

∑N
i=1 li = L, the first l1 agents

have the same choice, the next l2 agents have another
common choice, and so on. The state equations in (4) can
be put in a compact form:

ẋ(t) = (IL⊗A−LḠ ⊗ (BK))x(t) + (IL⊗ (BK))h̄, (5)

where h̄ = [(1l1⊗hi1)T , (1l2⊗hi2)T , · · · , (1lN⊗hiN )T ]T ,
and the Laplacian of the graph Ḡ takes the following form:

LḠ =


L11 L12 · · · L1N

L21 L22 · · · L2N

...
...

. . .
...

LN1 LN2 · · · LNN

 (6)

where Lij ∈ Rli×lj , i, j = 1, · · · , N .



Theorem 1. Under assumption 1 and 2, for any initial con-
dition x(0), the multi-agent system (1) can achieve choice-
based cluster consensus by using control protocol (2), if the
block matrices Lij ,i, j = 1, · · · , N of LḠ have constant row
sums.

Proof. Solving equation (5), one obtains

x(t) = eĀtx(0) +

∫ t

0

eĀ(t−s)(IL ⊗ (BK))h̄ds, (7)

where Ā = IL⊗A−LḠ⊗(BK). Assume the eigenvalues of
LḠ are λ1 ≤ λ2 ≤ · · · ≤ λL. Then, we know from Lemma
1 that λ1 = 0 and Re(λi) > 0 for i = 2, 3, · · · , L. Thus,
there exists an invertible matrix T which takes the form

T = [1L Y ] T−1 =

[
rT

Z

]
(8)

where r = [r1, r2, · · · , rL]T is defined in Lemma 1, Y ∈
RL×(L−1) and Z ∈ R(L−1)×L, transforms LḠ to a Jordan
form, i.e.,

T−1LḠT = J = diag{0,∆} (9)

where ∆ ∈ R(L−1)×(L−1) is upper triangular. Therefore,

eĀt =(T ⊗ In)e(IL⊗A−J⊗(BK))t(T−1 ⊗ In)

=(T ⊗ In)

[
eAt 0
0 e(IL−1⊗A−∆⊗(BK))t

]
(T−1 ⊗ In).

(10)

Since (A,B) is stabilizable, there exists a K such that A −
λiBK for all i = 2, · · · , L are Hurwitz as shown in [28, 29].
Thus, for such aK, we have eĀt → (1Lr

T )⊗eAt as t→∞.
It follows that

eĀtx(0)→ ((1Lr
T )⊗ eAt)x(0), as t→∞. (11)

Write Ā in the same block matrix form as M̄ in Lemma
2. Then M̄ij have constant row block-matrix sums, since
Lij in (6) have constant row sums. Therefore, Lemma 2 in-
dicates that the block matrices of the matrix

∫ t

0
eĀ(t−s)ds

partitioned in the same way as Ā, also have constant row
block-matrix sums. Concretely,

∫ t

0
eĀ(t−s)ds can be rewrit-

ten as follows:∫ t

0

eĀ(t−s)ds

=(T ⊗ In)

[∫ t

0
eA(t−s)ds 0

0
∫ t

0
e(IL−1⊗A−∆⊗(BK))(t−s)ds

]
(T−1 ⊗ In)

=(1Lr
T )⊗

∫ t

0

eA(t−s)ds+ W̄ (t)

(12)

where

W̄ (t) =


W̄11(t) W̄12(t) · · · W̄1N (t)
W̄21(t) W̄22(t) · · · W̄2N (t)

...
...

. . .
...

W̄N1(t) W̄N2(t) · · · W̄NN (t)

 (13)

is a time-varying nL × nL matrix and W̄ij(t) ∈ Rnli×nlj

are time-varying block matrices having constant row block-
matrix sums Θij(t). IfA−λiBK, i = 2, · · · , L can be made
Hurwitz, then limt→∞

∫ t

0
e(IL−1⊗A−∆⊗(BK))(t−s)ds exists

and is a constant matrix. It follows that W̄ (t), W̄ij(t) and
Θij(t), 1 ≤ i, j ≤ N also tend to constant matrices denoted
by W̄ , W̄ij and Θij , respectively, as t→∞. Therefore,∫ t

0

eĀ(t−s)ds(IL ⊗ (BK))h̄

→[(1Lr
T )⊗

∫ t

0

eA(t−s)ds+ W̄ ](IL ⊗ (BK))h̄

=((1Lr
T )⊗

∫ t

0

eA(t−s)ds)(IL ⊗ (BK))h̄

+


∑N

j=1 W̄1j(1lj ⊗ (BKhij ))∑N
j=1 W̄2j(1lj ⊗ (BKhij ))

...∑N
j=1 W̄Nj(1lj ⊗ (BKhij ))



(14)

as t→∞.
Combining (7), (11) and (14), one can derive that

xl(t)→ (rT ⊗ eAt)x(0)

+

N∑
j=1

(

∑j
q=1 lq∑

p=lj−1+1

rp)

∫ t

0

eA(t−s)ds(BK)hij

+

N∑
j=1

ΘljBKhij

(15)

as t → ∞, where Θlj = Θ1j for l = 1, · · · , l1, Θlj = Θ2j

for l = l1 + 1, · · · , l1 + l2, and so on. Note that the first
two terms on the right hand side are identical for all xl(t),
l = 1, . . . , L. Thus, xl(t)− xj(t)→ 0 if il = ij , i.e, agents
l and j make the same choice. Also, for properly designed
hil , one can have ||xl(t) − xj(t)|| > 0, as t → ∞ if any
two agents l and j make different choices. That is equivalent
to say N-cluster consensus is achieved. This completes the
proof.

Remark 2. The control protocol (2) can handle both stable
and unstable identical agent dynamics A, while [17] only
considered scalar systems with stable agent dynamics, and
[18] used pinning control to drive agents with unstable dy-
namics to achieve cluster consensus, which does not work
for stable system matrices. Also, From the proof of Theo-
rem 1, one can find that differences between cluster consen-
sus values are bounded, while in [18] and flocking problems
[11, 13, 14], distances between clusters can go to infinity.
[15] is an earlier work for agents modeled by first order
integrators and there is no definition for distances between
clusters.

3.2 Clustering in unicyclic graphs
Theorem 1 says that the control protocol (2) can help to

reach cluster consensus if Lij have constant row sums, but
it does not indicate the existence of such structures of the
Laplacian LḠ . A trivial case is that all L agents in Ḡ make
the same choice, then LḠ has a trivial partition itself and



complete consensus of the whole group is achieved. For the
unicyclic graph Ḡ, we give in this subsection more nontrivial
and interesting cases satisfying this structural condition.

According to the definition of directed trees, it is hard to
tell which node is the root of the attached trees in unicyclic
graphs, since every node has a parent. In this paper, we call
the node which is contained in C and has directed trees at-
tached to it be the root of its attached trees. For example,
in Figure 1, node 3 is the root of the tree consists of nodes
{3, 5} and node 4 is the root of the tree consists of nodes
{4, 5, 6}. Assume that the depth of the longest tree is d. Let
all agents forming the cycle (for example, agents 1-4 in Fig-
ure 1) be at the first level, the highest level; all children of
the first level agents (e.g. agents 5 and 6 in Figure 1) be at
a lower level, the second level, and so on. Then, there are
totally d levels.

If all of the agents in the same level make a common
choice, and the choices of different levels are distinct to
each other, then, one can verify that all Lij in the resulting
Laplacian (6) have constant row sums. More generally, all
agents at consecutive levels starting from the first level can
be grouped together to have a common choice, while for the
remaining lower levels an exclusive choice should be owned
at each level.

Corollary 1. Under assumption 1 and 2, if all agents at con-
secutive levels starting from the first level have a common
choice, while for the remaining lower levels an exclusive
choice is made at each level, then, for any initial condition
x(0), the multi-agent system (1) can achieve choice-based
cluster consensus by using control protocol (2).

4 Simulation

In this section, we provide simulation examples to illus-
trate our results. The topology of the graph to be used is
given in Fig. 1. Its Laplacian matrix is given by:

LḠ =



1 −1 0 0 · 0 0 · 0 0
0 1 −1 0 · 0 0 · 0 0
0 0 1 −1 · 0 0 · 0 0
−1 0 0 1 · 0 0 · 0 0
· · · · · · · · · ·
0 0 −1 0 · 1 0 · 0 0
0 0 0 −1 · 0 1 · 0 0
· · · · · · · · · ·
0 0 0 0 · 0 −1 · 1 0
0 0 0 0 · 0 −1 · 0 1


(16)

which is partitioned to 9 block matrices. It is easily seen that
these block matrices have constant row sums. Also, one can
partition from the first 6 rows and columns to construct a 2-
by-2 block matrix. The spectrum of LḠ is {0, 1, 1 ± j, 2}
where j =

√
−1, and Lemma 1 is verified.

The agent dynamics is described by a second order model:

A =

[
−1 0
0 1

]
B =

[
0
1

]
(17)

which is stabilizable.Since the first coordinate is stable and
uncontrollable, so, we only need to consider the second co-
ordinate. The controller gain is chosen as K = [0, 2]
such that A − λiBK is stable for all λi, i = 2, · · · , 8.

h1 = [0,−2]T , h2 = [0, 0]T , h3 = [0, 2]T . Simulation re-
sults for the second coordinates of x1l(t) := x1(t) − xl(t)
for all l ∈ I are exhibited for the following different cases.

(1) Assume that agents at the first level choose 1, i.e, il =
1, for l = 1, · · · , 4, agents of the second level choose 2, i.e,
il = 2, for l = 5, 6 and agents at the third level choose 3, i.e,
il = 3, for l = 7, 8. Fig.2 shows that choice-based 3-cluster
consensus is achieved.
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Fig. 2: Choice-based 3-cluster consensus.

(2) Assume that agents at the first level and the second
level choose 1, i.e, il = 1, l = 1, · · · , 6, and agents at the
third level choose 2, i.e, il = 2, l = 7, 8. Fig.3 shows that
choice-based 2-cluster consensus is achieved.
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Fig. 3: Choice-based 2-cluster consensus.

(3) Assume that agents of the first level and the third level
choose 1, i.e, il = 1, l = 1, · · · , 4, 7, 8, and agents at the
second level choose 2, i.e, il = 2, l = 5, 6. So the grouping
rules in Corollary 1 is violated. Fig.4 shows that the whole
group splits into three clusters but only two choices are made
by the agents. So it is a cluster consensus in the sense of
[15, 17], but not a choice-based cluster consensus as claimed
in Remark 1.
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Fig. 4: Two choices result in three clusters

5 Conclusion

This paper studied choice-based actions in a unicyclic
multi-agent network, where each agent has only local infor-
mation. Choice-based cluster consensus is investigated for
multiple agents with identical generic linear models. A dis-
tributed control protocol is proposed such that agents make
the same choices can reach a common consensus state value,
while agents make different choices will reach distinct state
values. Especially, a grouping method for unicyclic graphs is
presented such that the structural condition is satisfied. For
future studies, one can consider dynamically changing graph
topologies, so that agents can change their neighbors to sat-
isfy the structural condition.
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