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Abstract—Protocol sequences are used for channel access inindependent of the data being sent and there is no cooperatio
the collision channel without feedback. Each user accessése among the users.
channel according to a deterministic zero-one pattern, céd the The capacity of the collision channel without feedback is

protocol sequence. In order to minimize fluctuation of throughput : . .
due to delay offsets, we want to construct protocol sequense characterized by Massey and Mathys in [1]. Itis shown that th

whose pairwise Hamming cross-correlation is as close to a ZE€ro-error sum-capacity is"!. They use protocol sequences
constant as possible. In this paper, we present a construoth having the special property that the Hamming cross-cdiogla
of protocol sequences which is based on the bijective mapgin s independent of relative delay offsets. In fact, the Hamgni
between one-dimensional sequence and two-dimensional agrby o5 correlation they considered is a generalized nation
the_C_hlnese Remal_nder Theorem (CRT). In the application to he H . ) lati hich is defined f I t
collision channel without feedback, a worst-case lower bawd on amming Cross corre.a 1on, w '_C IS defined Tor all nongmp
system throughput is derived. subsets of users, not just for pairs of users. Protocol sempse
. ) with this property are calledhift-invariant sequences [2].
Tags: Protocol sequences, collision channel without feeyif jnvariant protocol sequences have the advantage tha
back, cyclically permutable constant-weight codes, @liCygre ig no fluctuation in throughput no matter what the delay
orthogonal codes. offsets are, and hence have the largest worst-case system
throughput. Constructions of shift-invariant protocajgences
. INTRODUCTION are considered in [1]-[3]. Nevertheless, shift-invarigmo-
A. Background and Motivation tocol sequences have the drawback that the period grows

Randomness is commonly used in the design of multipleXponentially in the number of users [2]. Even if we relax
access schemes. For example, in slotted ALOHA, each ullig requirement and consider protocol sequence sets with
transmits a packet with probability independently. Imple- Only pairwise Hamming cross-correlation being constdris i
mentations of such random access schemes in practice @Wn in [4] that the period grows exponentially in the numbe
ally substitute random variables by pseudo-random numbe?s users as well. Long period length has the disadvantage
However, high-quality pseudo-random number generation mgat individual or system throughput is invariant only if it
be too complicated for applications, such as wireless sentd averaged over a long period. Individual users may suffer
networks, where computing power is limited. The objectivéhort-time starvation. In order to achieve short periogjien
of this paper is to construct binary pseudo-random seqsenc¥e must §eek for protocol sequences with some small variance
called protocol sequences, that are tailored to the quafity in Hamming cross-correlation allowed. _
service requirements of interest, such as high throughpait a After the seminal work of [1], more constructions of proto-
bounded delay. col sequences are given in [5]-[9], sometime under the name

Protocol sequences are used in multiple-access in the cdif cyclically permutable constant-weight codes optical
sion channel without feedback [1]. In this paper, we consigarthogonal codesThe main difference between these works
a time-slotted system, consisting of a number of transmsittdn the literature and our construction is that, the protocol
and one receiver. A user sends a packet within the boundaggguences in these papers are required to have small Hamming
of a time slot. If exactly one user transmits in a time slofross-correlation and auto-correlation. In our constonct
the received packet is received successfully. If two or moF@mming auto-correlation may be very large.
users transmit in the same time slot, a collision is incyrred Another class of protocol sequences, calledbbling se-
and the received packet is assumed unrecoverable. If no Udggnce$10], has period equal td/*, wherelM is the number
transmits in a time slot, that time slot is idle. Since therag ©Of users, with worst-case system throughput provably targe
feedback from the receiver, collision resolution algariteuch than a positive constant that is approximately equal to 0.25
as the stack algorithm is not possible. Each user repeats W[ien M is large. The result in this paper improves upon
assigned binary protocol sequence periodically, and e  the wobbling sequences by constructing protocol sequences
packet if and only if the value of the protocol sequence at th@f order O(M?) or O(M?), depending on the models of

time slot equals one. We note that the transmission schesiulgSer activity, while the guarantee of the worst-case system
throughput remains the same.
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involved, the generation of such sequences requires no mboe two binary sequences(t) and b(¢) of length L, their
than computing linear operations in modular arithmetics Hamming correlation functios defined as
The proposed CRT sequences have two special features, I—1
user-identificationand frame—synchron|zat|0|¢apabll|ty. The 3 Hyy(r) = Z a(t)b(t — 1),
sender of each successfully received packet can be idéntifie

by looking at the channel activity only, without looking @nt \ﬁv:heref is the delay offset, and — r is the difference in

t=0

the packet contents. Alsp, we can determine the start.tllnaeo oduloL arithmetic. Whena(t) = b(t), Haa(7) is called
protocol sequence, again, based on the channel activity onla Hamming auto-correlatiorof a(). When a(t) and b(t)

tOne tpotsntlgl flp[;)_llcatlon based lon this pTOpe][ty IS tragl:tl.('?ire two different sequenceél,,(7) is called theHamming
argets by detecting energy pulses coming trom MultiDi,qs correlationof a(t) andb(t).
distributed sources, for example, as in a multistatic radar

system or in a ultrasound based sensor network. While it may,
be difficult to identify the transmitting source of a singlése,

if each source employs a CRT sequence and sends multi
pulses according to the corresponding protocol sequehes, t
the identifiability property ensures that a detector camtifie Definition 2. Given a sequence(t) of length L, let the
the transmitting sources of the pulses and make use of tHracteristic setof a(t), denoted byZ,, be the subset of

hen the number of ones in a zero-one sequence is small
ir% compare to the length, the sequence can be compactly
Sresented by specifying the locations of ones.

information for more accurate tracking of the targets. Zy, such thatt € 7, if and only if a(t) = 1.
Shifting a sequence cyclically byis equivalent to translating
B. Main Results its characteristic set by, with addition performed moduld.

The main construction is given in Section Il. One opivenasubsefin Zy, andr € Zr, we denote the translation

the key ingredients in the construction is the one—to—or?ézbyT as

correspondence between one-dimensional sequence and two- I+r:={x+7€Zy: xcTI}

dimensional arrays via CRT. The correlation property of the ) o )

constructed sequences is analyzed in Section III. Expresged in terms of the characteristic set, the Hamming
Applications to the collision channel without feedback argorrelation of sequences) andb(t) equals

addressed in Sectiqn IV with two _different user activity Ho(7) = |Za N (T + 7))

models [11]. In the first model, an infinite backlog of data is .

assumed and the users are active throughout the transmisdi@f all 7 = 0,1,..., L — 1, where|S| denote the size of a

We show in Theorem 7 that under this user activity modefetsS.

we can achieve a throughput of 0.25 wifi{ M/?*) sequence

period, where)/ is the number of users. [I. THE CRT CONSTRUCTION
In the second model, users become active only if they hage The CRT correspondence

data to send, and remain idle otherwise. If a user become§Ne shall construct sequences with length- pg, wherep

active, '.t is required that the user remains active for a$t!e ndq are relatively prime integers. In subsequent discussions,
one period of the protocol sequence assigned. We show in 8takep to be a prime number angan integer not divisible
second part of Section IV that if the number of active userSﬁ

no more than one half of the number of potential users, and
the protocol sequences are sufficiently long, nantiy/?),
the receiver can detect the set of active users and determine Gpq =1Ly ® 7L,
their starting time correctly, even without any packet hezad

To facilitate comparison between different protocol se”
guences, we introduce in Section V a notion called
uniformity, which measures the variation of Hamming cros®y Chinese remainder theorem [12, p.34}, , is a bijective
correlation. Other applications of CRT are given in Seclbn map. We will call @, , the CRT correspondenc&Vhen the

values ofp and ¢ are clear from the context, we writ(z)

Define a mapping fronz,, to the direct sum

@, 4(2) := (x mod p,x mod g).

C. Definitions and Notations instead of®,, ,(z).

LetZ, be the ring of residues modfor a positive integen. It can be easily checked that the CRT correspondence is a
We will reserve the letteL for sequence length. linear map, meaning that
Definition 1. The components in a sequence of lengtlare Dy g(7 + ") = 0y (7)) + Bpg(2).

indexed from O taL — 1. The time indiceq0,1,...,L—1}is
identified withZ . TheHamming weighof a binary sequence
a(t) of length L is denoted byw,. Theduty factor[1] of a(#)
is the Hamming weight divided by the length,

Here, the addition on the left hand side is the additiofZp,
and the addition on the right hand side is the additiofrjy,.

A sequence(t) of length L is associated with ax ¢ array
S(t1,t2), wheret; andt, range from O tgp—1 and 0 tog — 1
L-1 respectively, via the relation

part . S(t mod p, t mod q) = s(t).



The corresponding characteristic sets¢f) in Z;, is mapped Toe (1) (1) (1) (1) (1)

to a subset of7, , via @, , as well. %35 0 0 0 o
Under the CRT correspondence, a one-dimensional cyclic

shift of s(t) by one time unit is equivalent to a column- 10 0 10

wise shift followed by a row-wise shift. One-dimensional T35 P

correlation properties can be translated to the two-dimoeas

ones. 10 0 1 O
For illustration, consider the time indicg$, 1,2,...,14) Ir35: 8 (1) (1) 8 (1)

as an integer sequence of length= 15, p = 3 andgq = 5.

By the bljectloncI>375, this integer sequence is mapped to Fig. 1. The three arrays associated with characteriste &gt 5, Z1,3,5,

0 6 12 3 9 T2,3,5-
10 1 7 13 4

5 11 2 8 14 . .
We say thatZ, , , is generated by, andg is the generator

When  (0,1,...,14) is cyclically  shifted to of Z,,,. If p andg are clear from the context, we writg,
(14,0,1,2,...,13), the corresponding array is instead ofZ, ,, 4.
14 5 11 2 8 _ _ , o
9 0 6 12 3 The elements irtZ, , , form an arithmetic progression in
4 10 1 7 13 Gp,q With common differenceg, 1). We can re-writeZ , ,

in the following form
Note that the second array can be obtained from the first one

by cyclically shift downward by one row and then to the right Ty =1{(gt;t) € Gpq: 0 <t < g},
one column.

For m = (r1,m) € Gp,q, define the Hamming correlation
between two 2-dimensional arrays and B by

with the productyt in the first component reduced med
Remarks:Forg = 0,1,...,p — 1, the array withZ, , , as

the characteristic set contains exactly one “1” in eachroolu

Hag(T) := ZA(t)B(th), For ¢ # 0, each block ofp consecutive columns form a
t permutation matrix. (Recall that a permutation matrix is a

with the subtraction calculated i, ,, and ¢ running over Sduare zero-one matrix with exactly one “1" in each row and

all elements inG,.,. It is easy to check that this definition®ach column.)

of Hamming correlation is compatible with the 1-dimensiongygfinition 4. (CRT sequences) Far= 0, 1 .p—1, define

analog, i.e., the CRT sequence generated faydenoted bys, ,, ,(¢), be the
HaB(71,72) = Hap(T) binary sequence of length obtained by setting

1 if @p4(t) € Zypq

The Hamming correlation between two 2-dimensional ar- Sgp.q(t) = _
w 0 otherwise

raysA andB can be expressed in terms of their characteristic
setZa andZg as

HAB(’T) = |IA n (IB +T)|,

whereZ, denotes the characteristic set Af

with 71 = 7 mod p and» = 7 mod g. {

We will write s,(t) if the values ofp andg¢ are understood.

Example 1.p = 3 and ¢ = 5. The three characteristic sets

are:
IA = {(Z,j) S Zp (&) Zq : A(LJ) = 1}; Toss = {(070)7 (07 1)7 (072)7 (07 3)7 (07 4)}7
and the addition irZg + 7 is performed inZ, & Z,. Ti 35 = {(0,0), (1,1),(2,2),(0,3), (1,4)},
12,3,5 = {(07 0)7 (27 1)7 (17 2)7 (07 3)7 (27 4)}

B. The CRT sequences The three arrays are shown in Fig. 1. The top left corner in

We will construct sequences by specifying characterigtis s each array is thé0,0)-entry. The generated CRT sequences
in G,,4. Rows and columns of matrices and arrays will bgre listed as follows

indexed by{0,1,...,p—1} and{0,1,...,g— 1} respectively.
so(t) : 1001001001 00100

s1(t) : 1111100000 00000
s2(t) : 1001000100 01001.

Definition 3. Let p be prime and; be an integer not divisible
by p. Forg € Z,, we define

Zypq:={(g: Dt € Gpq: 0<t < g} 1)

The notation(g, 1)t simply means the sum ofcopies of(g, 1)

in Gp.q, CRT sequences satisfy the following properties.
(g, )t := (g,1) + (g, 1) + ...+ (g,1). Theorem 1.

M 1) The Hamming weight of each CRT sequence is



2) so(t+p) = so(t), i.e., the least period of sequenggt) For nonzeroh, we can divide both sides of (4) by and
is p. re-write it as
3) For each residueg mod g, there is exactly one “1” at o - _
: t=ii+q,i+2q, .. .,z‘i (p—1)g in 59(13;. z(h™'g) = (@S 72) &p (h™'1) mod p.
For each fixedr,, asr; runs throughZ,, h~17 also runs
through Z,,. Therefore, the distribution of Hamming cross-
correlation betweens,(t) and s,(t) is the same as the
distribution of Hamming cross-correlation betweepy,(t)
and s1(t). From this observation, it suffices to take= 1
without any loss of generality. We will consider the Hamming
cross-correlation betweesy(t) and si(¢), for ¢ = 0 and
=2.3,...,p— 1.
The following simple lemma is used repeatedly in the
derivation of Hamming cross-correlation properties.

Proof: As the characteristic s}, , , containsg elements
and the CRT correspondende preserves Hamming weight,
the first statement in the proposition follows immediately.

For g = 0, the elements in characteristic s&t, , have the
first coordinate identically equal to zero. Fpe=0,1,...,q—
1, The pre-image of0, j) under® is a multiple ofp. We have
so(t) = 1 whenevert is a multiple ofp.

For the last statement in the proposition, consider the ima%
of i + kq, for k =0,1,...,p— 1, under the mappin@,

©(i + kq) = (i + kg mod p, i mod g). Lemma 1. For eachb € Z,, the number of solutions to

The second coordinate is constant.klfgoes through0 to
p— 1, ®(i + kq) will go through theith column in the array
with characteristic sef,, , ,. Because there is exactly one “1"for  going throughd consecutive integers c+1, ... c+d—1,
in each column, there is exactly one “1” in positions= equals
,i+q,...,i+ (p—1)g. [ | d/p if p dividesd,

|d/p] +9 otherwise,

Z=bmodp

IIl. CORRELATION PROPERTIES OFCRT SEQUENCES

We continue to use the notation thais a prime number, o
¢ is an integer not divisible by. Let L = pq denotes the Proof: Suppose thad is divisible byp. If we reduce the
sequence length. In this section, we determine the HammiRgegerse, c+1,...,c+d —1 modp, we have each element
correlation of the CRT sequences. In this section, we wil ud) Z, repeatedi/p times. Hence, for each € Z,, there are
the notationz for the remainder of; after division byp. We €xactlyd/p integers in{c, c+1,...,c+d—1} whose residue
distinguish the two additions mog and modq by @, and mModp equalb _ o N
@, respectively. Now suppose thad is not divisible byp, we d|V|d_e thed
Forg = 0,1,...,p — 1, the p x ¢ array corresponding to _consecunve integers into two parts. Among the fiéfp|p
sequence,(t) is denoted byA ,. Recall that the characteristicintegers, for each € Z,, exactly | d/p] equalsb modp. The
set of A, is given in (1), andA,(i,j) = 1 if and only if residues of.the remaining— |d/p|p integers are d|st|nc'F. The
i=jgmodp, fori=0,....p—1andj=0,...,q— 1. For humberofintegersifc,c+1,...,c+d—1} whose residues

whered equals either 0 or 1.

notational convenience, we let equalb is either|d/p] or [d/p| + 1. [
Hyn(m,7) := Ha. a, (11, 7). @ We obtain the following theorem immediately from
e g Lemma 1.
A. Hamming Cross-correlation Theorem 2. The Hamming cross-correlation of;(¢) and

Let g and i be two distinct elements if,,. As argued in so(t) is equal to eitherlg/p] or |q/p] +1.
the previous section, the cross-correlation of CRT seqeenc  Proof: If we putg =1 andh = 0 in (4), we get
s4(t) and sy, (t) is equivalent to the cross-correlation of the
associateg) x g arraysA, and A, namely by counting the
number of elements in common & andZ, + (71,72). BY The number of integers if0, 1, ..., g—1} that equak; mod p
definition, the translatiod;, + (m1,72) of Z,, is is either |¢q/p| or |¢/p] + 1 by Lemma 1. ™
((Gh) ®p 71, By 7a): j=0,1,. . ,q—1}. 3) From now on, we assume > p, which is the case of

practical interest.
By a change of variable, (3) can be written as

T = 11 mod p.

Theorem 3. Suppose > p. Letm be the quotient of divided

{(GSqm)h) @p71,5): j=0,1,...,q—1}. by p, i.e.,m = |¢/p], and letg € Z,, 0 # g # 1. Let g be
) ) the residue of; modp, and
where ©, denotes subtraction mog In the calculation of

(j ©4 72)h, 1©,m2 must be first reduced to an integer between by = (9 —1)"'gmod p. )
0 andq — 1 before we reduce modulp. The intersection of
Z, andZ; + (11, 72) equals to the number of solutions to

The Hamming cross-correlation betweep(t) and s;(¢) is
bounded between

29 = ((x ©q T2)h) ©p 71 mod p. (4) m—1andm+1 if0<b, <p—gq, or
forx=0,1,...,¢— 1. m andm + 2 if p—q<by <p.



Proof: For the first part of the theorem, we hayequal

The proof of Theorem 3 is in Appendix A. We remark tha&0 1 modp. So

in Theorem 3,b, is neither O norp — g. The value ofb, is by = (g — 1)*1(7 =(g— 1)*1 mod p.
nonzero modp because botly — 1 and g are nonzero. On
the other handb, is equal top — g only if g = 0, which is Wheng runs from2 to p — 1, the value ofg —1 runs over all
excluded by assumption. elements irZ,, except 0 angp—1. For oddp, the multiplicative
_ _ inverse ofp — 1 is itself. Hence the range ¢f — 1) ! mod p
With more careful book-keeping, we can determine exactly Z, \ {0,—1}. We thus obtair) < b, < p — 1. The result
the frequencies of occurrence of Hamming cross-correlationow follows from Theorem 3.

Definition 5. Let the distribution offf,y (r1, 72) be The second part can be proved similarly. =
No(g) :=[{(m1,72) € Gpg - Hor(m,72) =}, (6) g Hamming Auto-correlation
forj=0,1,....q. The distribution of the Hamming auto-correlation can also
be determined explicitly.
Theorem 4. With notation as in Theorem 3, we have Theorem 6.
1) No(m) = (p —q)g, No(m +1) = qq. oo ,
2) If 0 < by < p—q, then Hoo(r) = qg if7is g multiple ofp,
0 otherwise
Ng(m—1) =n (7)
_ Forg=1,2,...,p—1,andk=0,1,...,g— 1,
Ng(m) =q(p—q) — 21 (8) g P
Ng(m+1) = qq+mn, )

H,

99

) = {qk if ®(r) = +(g, 1)k,

0 otherwise
where

1 = mby(p — by — q).
Proof: The first statement follows by the second part of
Theorem 1 thak,(t) has least periog.
Ny(m)=q(p—q)+0 (10) For the second statement, we note thatl )¢ runs through
N 1) — ad — 20 11 the whole grougs,, , ast runs from 0 topg — 1. This follows
g(m +1) = qq — 20, 1D from CRT, because for any andy,
Ny(m+2)=10 (12)

3) If p—gq < by <p, then

gt=x mod p
where _
t=y mod q

0:= (m+1)(p = bg)(q+ by —p)- has one and only one solution mqe;. Via a bijective

mappingt — (g, 1)t, the setZ, can be regarded as an arith-
metic progressiof0,1,2,...,¢—1} in Z,,. The intersection
Example 2. For the CRT sequences in Example 1 witds N (Zy + (i.])) is @ subset of, that is also an arithmetic
parameterp = 3 and ¢ = 5, we tabulate the distribution Progression. The intersectidiy N (Z, + (7, j)) is nonempty if
of Hamming cross-correlation betweep(t), and s, (t), for and only=£(i, j) € Z,. If |Z, N (Z, + (4,5))| is nonzero, then

The proof is relegated to Appendix B.

g # 1, as follows. (i,4) is equal to+(g, 1)k for somek =0,1,...,¢— 1, and
Lo [ b [[ Ng(D) [ Ng(2) | Ny(3) | 1Zg N (Zg + k(g, 1)) = q — [K].
01 5 10 0 -
212 7 6 2

We note that ifg = 2, thenb, is 2 mod 3. By Theorem 3, |y, APpPLICATION TO THE COLLISION CHANNEL WITHOUT
H (7) equals 1, 2, or 3. The Hamming cross-correlation is FEEDBACK

distributed according to the third part of Theorem 4. . . . .
9 P Consider a time-slotted collision channel wifk trans-

Wheng = £1 mod p, the Hamming cross-correlations havenitters and one receiver as described in the introductory
three distinct values, for all pairs of distinct CRT sequesncsection in this paper, and assume that there is no cooperatio
chosen fromsy (t), sa(t), ..., sp—1(t). among the users, and no feedback from the receiver. We
regard a packet as@-ary alphabet chosen from the alphabet

Theorem 5. Suppose; > p. setQ = {1,2,...,Q}. The channel output at sletequals

1) Let ¢ be of the formmp + 1. For g = 2,3,...,p — 1,
Hgi (1) is betweenm — 1 andm + 1. 0 if no user transmits at slat
2) Letgq be of the formmp+(p—1). Forg =2,3,...,p—1, « if two or more users transmit at slot

Hg () is betweenn andm + 2. x if exactly one user transmits a packet with content



Each user is assigned a deterministic and periodic zero-aral the maximal value is
sequence, called protocol sequence [1]. Fef 1,2,..., K, (p+1)2 k2
the protocol sequence associated with usés denoted by 1 rrl (16)
s;(t), which is a periodic binary sequence of peridd As
there is no feedback from the receiver and no cooperati
among the users, each user has a relative delay offséhich
is random but remains fixed throughout the communicatidiieorem 7. Let
session. Usef sends a packet at slotif s;(¢t +7) = 1, and M= {MJ
remains silent ifs;(t +7) = 0. 2(k+1)

We consider two different factors in the system modein Construction 1. The system throughput is lower bounded by
(i) systems with packet header or without packet header, 1 (p+1)2 k2 k41
and (ii) systems with permanent user activity or partialruse 1 =0 & T a7)

- : : p’—p k+1 kp*—p
activity. For system without packet header, the receiver ha
to identify the set of active users (user identification)d an
determine the sender of each successfully received packet Proof: Consider the expression in (14) as a functionbf
(packet identification). If packet header is present, imiation and denote it byf (A1). The coefficient of\/* is —(k +1). If
such as user identity is obtained readily by looking up th&e takeM = M, we deviate from the optimal value aff*
header, and there is no user and packet identification probldy at most 1. Therefore,

For system with partial user activity, the number of active FIM*) = f(M) = (k+1)(M — M*)?> <k + 1.
usersM is smaller than the total number of potential usérs k(pil) | .
When a user changes from inactive to active, packets are séie Put M = | 57==5] in (13), we drop from the optimal
according to the protocol sequence assigned. It is assumaed ¥alue in (16) by at mosk + 1. Hence the total number of
after all the data are sent, the user must remain inactivatforsuccessful packets, divided by the period, is lower bounded
leastL slots before becoming active again. On the other harJRM (7). _ u
if permanent user activity is assumed, the number of activeTheorem 7 provides a lower bound on the worst-case
users}M is equal to the total number of users, and each ugdroughput. The mean system throughput, averaged over all
sends packets periodically according to the protocol secpie delay offsets, is however much higher than the lower bound.

Example 3. We consider an example with/ = 19 users,
using CRT sequences with= 37. The throughput is plotted
against sequence length with increasingwhile keeping the
For systems with a packet header, the users are simgiyty factor fixed atl /p. We compare the lower bound in (17)
identified by packet headers. We calculate the achievallfworst-case throughput with the average throughput nbthi
throughput when CRT sequences are used. Let the numbebgpgimulation in Fig. 2. For eack, 100000 delay offset combi-
users belM. We pick M sequences from the CRT sequencesations are randomly generated. Beside the mean throughput
generated with parametepsand q. To take advantage of thethe maximum and minimum throughput obtained among these
three-valued property mentioned in Theorem 5 we picik a100000 delay offset combinations are also plotted. We can
which is —1 modp. observe that the mean system throughput is about 0.31, in
accordance with the theoretical value

After dividing the above by the period, we obtain the follogi
er bound on throughput.

A. Permanent User Activity with Header

Construction 1. Let p be a prime number and a positive

integer. We choosg = kp — 1. The CRT construction in M- 1(1 _ E)Mfl _ B(l _ i)ls — 0.314.

Definition 4 yieldsp protocol sequences of length= kp? —p p p 37 37

and weightw = kp — 1. We pick anyM sequences from this When the length increases, the lower bound approaches
set of CRT sequences. 0.25(p + 1)%/p? — 1/p* = 0.263.

Since the Hamming weight i¢p — 1 and the pairwise Asymptotically, if we increasé& andp in such a way that
Hamming cross-correlation is at mokt 1 by Theorem 5 k increases much slower than we obtain a lower bound on

the total number of successful packets (summed ovenall the System throughput af/4.
users) is lower bounded by Theorem 8. For arbitrarily small ¢,6 > 0, there exists an

infinite class of protocol sequence sets of lengtn/2+<),
Mlkp =1~ (M = 1)(k +1)]. (13)  where M is the number of sequences, with system throughput

By completing square, we can write the above as lower bounded by.25 — ¢ for all sufficiently largei.

Proof: We choosé: = log(p). The lower bound of system
1)\2 1)\2 . .
(k+1) [— (M _ )) + (k(p+ )) ] . (14) throughput in Theorem 7 tends 19'4, with

2(k+1) 2(k+1)
L ~ kp* ~ k(2M)? ~ 4M?log M.

Consider (14) as a function df/. The maximum value is
obtained when We can find an integerM, sufficiently large such that
M= kE(p+1) (15) 4M@log My is less thanMj <. The theorem then holds for
B Q(k; + 1)7 all M > M,. |



a collision or a successful transmission, without lookintpi

0.45

~~ Max observed throughput || the packet contents.
- —-Mean throughput
0.4t ~a~ Min observed throughput || Definition 6. For each time index, let ¢(¢) be 0 if it is an
— Lower bound idle slot, 1 if exactly one user transmits a packet, or * if
08BF T | two or more users transmit. We callt) the channel-activity
_ 77T 71 signal We say thate(t) is matchedto s;(t) at time to if
z;os— el ahaaaassse -a---a -} Vi=0,1,...,L—1,8()=1=c(to+1t) =1 or =
=] AT
§ 0.25} ] The receiver stores the channel-activity signal in a finst-i
_— first-out queue.
0.2} /// 1 We want to determine (a) the time when a user becomes
e active, and (b) the time when an active user change status
0.15F /// 41 from active to idle. The receiver keeps track of the active
g users by maintaining — 1 Boolean variablesictive(i), for
0.1 . 1=1,2,...,p— 1. The value ofactive(i) is set tOFALSE if

‘
10 10* 10

Sequence Peirod the user is idle, andRUE if the user is active. To determine

whether useri becomes active at timg,, the receiver wait
until time ¢+ L. At that time the channel-activity signal(t,),
Fig. 2. System Throughput of CRT Sequences for 19 Ugers,37. c(to+1),...,c(to + L — 1) are available. The receiver then
checks whethee(t) is matched tos;(¢) at timety. If there is
. . ) a match, we declare that useis active and the starting time
B. Partial User Activity without Header of useri is stored in variablestart(i). We summarizes the
In this application, we use a modified version of the CRprocedure in Algorithm 1 below.
correspondence. Letbe the multiplicative inverse gf in Z,,
i.e.,vp = 1 mod ¢. Sincep and ¢ are relatively prime, such Algorithm 1 Determining when a user becomes active or
inverse exists. Define the mappidg , : Z,;, — Gy 4 by inactive at timet,.
1. fori=1,2,...,p—1do
2:  if active(i) = FALSE then

@, , () := (2 mod p, yz mod q).

It can also be shown thab/ (x) is a group isomorphism 3: if c(t) is matched tos;(t) atty then
betweenZ,, andG), ,. 4: active(i) < TRUE
Because of its unfavorable Hamming auto-correlation props: start(i) < to
erty, the sequence generated py= 0 is not used in this 6: end if
application. Given a prime numbgythe system supporis—1 7 els_,e _ _ _
potential users. We label the users from Ipte 1. 8: if to — start(i) is a multiple of L and c(t) is not
. . ) matched tas;(¢) at timet, then
Con;tructlon 2. Letp be a prime numbgr, angbe an integer active(i) < FALSE
relatively prime top. Choosey as described above. Fgr= 10- start(i) + 0
1,...,p—1, construct the CRT sequeneg(t) of lengthpg ;. end if
by setting 12:  end if
@ 1 if @ (1) € Typg 13: end for
s = ’
J 0 otherwise

Under some conditions on the number of active users and
period length, we can show that the above algorithm is able
The sequence generated s assigned to user. We have to identify the starting time of each user.

used®;, () in the above construction, instead ®f ,(z) as : 9
in Construction 1. The cross-correlation properties of e Theorem 9'. Letp _be a prime number, and > 2p° be an
sulting modified CRT sequences are exactly the same as in wgger rel_atlvely prime tg. Construc—1 CRT sequences by
previous section, because the proof in the previous sedion onstruction 2 and assign them to Users Ipto 1. Suppo;e
essentially about two-dimensional Hamming cross-cotimeia that at mo;t(p +1)/2 users are ac'qve f.it the same time.
If @ is replaced byd’, all theorems about Hamming crossynen Algon.thm 1_can sycce_ssfully identify the active users
correlation and auto-correlation also hold. and determine their starting time.

Sequence synchronization The proof of Theorem 9 is given in Appendix C.

For systems without a header, we need to identify the sendetample 4. Consider the CRT sequences generated with
of a successful packet. Also, as users may come and go, pegameterp = 7, ¢ = 8 and~ = 7. The period is equal to
also need to determine when a user becomes active. We sk@vSuppose that users 1, 2, 3, 4 and 6 are active. The relative
that these two tasks can be achieved by merely observing tteday offsets of users 1 and 2 are 0, and the relative delay
channel activity, that is whether a time slot is idle, comitag  offsets of users 3, 4 and 6 are 1. The CRT sequeRcgs



) : 10001000 00000001 00010000 00000010 00100000 00000100 01000000 10
) : 10010000 00000100 00000001 00100000 00001000 00000010 01000000 10
sg(t — 1) : 01000001 00000100 00010000 00000000 10000010 00001000 00100000 01
)
)

: 01000010 00010000 00000001 00001000 00000000 10000100 00100000 01
: 01000000 00000000 00000000 00000000 00000000 00000000 00111111 11

c(t) : *x011011 0001001 000%000% 00101010 10101010 10001%10 O%%11111 =x

s¢(t) : 10000000 00000000 00000000 00000000 00000000 00000000 01111111

Fig. 3. CRT sequences in Example 4. Sequence periods araiediby underbraces.

to s4(t) andsg(t) and the induced channel-activity sigr@t) cross-correlation from Theorem 5. After some simplificasio

are shown in Fig. 3 (18) can be written as
By comparing withsg(t), the receiver declares that the
channel-activity signal is matched tg;(t) at time 0. The D(p, k) = l[kar k—p+3] (19)
k) =3 .

receiver cannot distinguish whether user 6 starts tratisiget

time 0 or 1, and erroneously detects that user 6 becomezeactivA i q b lied th K
at time0, while the actual delay offsets is 1. Thus Algorithm 1 n erasure-correcting code can be applied across the pack-
fails in this case. ets in a period. We pick) to be a power of prime such that

@ > kp+ 1. We encodeD(p, k) information packets using

The preceding example illustrates that Algorithm 1 does natshortened Reed-Solomon (RS) code of lengih+ 1 over
work if there are too many active users. Theorem 9 assetts ttiee finite field of sizeQ. The kp + 1 encoded packets are
such error in synchronization does not occug i 2p? and sent out according to the assigned protocol sequence. Becau
the number of simultaneously active users does not exceddhe maximal-distance separable property of RS codes, we
(p+1)/2. can recover the information packets. We have thus proved the

If ¢ = +1mod p, the Hamming cross-correlation of thefollowing
resulting CRT sequences is three-valued (see Theorem b).
these preferred choices of we can improve Theorem 9 by
relaxing the requirement > 2p? to ¢ > p2.

lFﬁeorem 10. Suppose that there are + 1)/2 active users
out of p — 1 potential users in the collision channel without
feedback, wherg is an odd prime. Each active user can send
Theorem 9'. Let p be a prime number, ang > p* be D(p, k) information packets in a period @f kp+1) time slots,
an integer such thay = £1 mod p. Constructp — 1 CRT whereD(p, k) is given in(19) and k is an integer larger than
sequences by Construction 2 and assign them to users lotoequal top. In particular, if we takek = p, the resultant

p — 1. Then Algorithm 1 can identify the active users an@RT sequences have perigti+ p, and when(p +1)/2 users
determine their starting time, provided that the number eire active, the system throughput is lower bounded by
simultaneously active users is no more than+ 1)/2.

p+1 0.5(p* + 3)

The proof of Theorem 9’ is analogous to the proof of
2 pP+p

Theorem 9 in Appendix C.

> 0.25.

Erasure Correction and Throughput
We have shown in Theorem 9 that the receiver is able to
figure out the delay offsets of the active users. From a specfixample 5. We pick p = 19, k = 19 andg = p* + 1 =
user’s point of view, the channel reduces to an erasure ehang62 in Theorem 10. Generate 18 CRT sequences of length
In the remainder of this section, we pigkio be an integer P¢ = 6878 by Construction 1. Pick) = 512 = 2°, which is
of the formkp + 1, for some integek > p, so thatg is larger @ Pprime power larger than the Hamming weight of the CRT

thanp? and Theorem 9’ can be applied. sequences under consideration. Using a shortened RS code of
For each user, the number of successfully received packi§dth 362 and dimensiod(19,19) = 182 over the finite
in a length is lower bounded by field of size512, we encode 182 information packets in each
1 period for each active user. When 10 users are active, the
(kp+1) — (1% _ 1) (k+1). (18) total number of information packets sent through the system

is 182 x 10 = 1820, achieving system throughput no less than
The first termkp + 1 is the total number of packets sent by a820/6878 = 0.265.
user in a period. The factdr+ 1 is the maximum Hamming



V. COMPARISON WITH OTHER PROTOCOL SEQUENCES Example 7. (Prime sequences [13]) Given a primgwe can

In order to compare the variation of Hamming crossionstruct a sequence set with perigd Hamming weightp
correlation due to delay offsets, we introduce in this secéi @nd Hamming cross-correlation no more than 2. The mean
measure of deviation calleduniformity. Hamming cross-correlation is 1. For each pair of distinct

Given any two binary and periodic sequenceg) and Prime sequences, the maximgl,,(v) — E,[Hay(7)]| over
b(t), let E,[Hu(7)] be the expectation of Hamming crossall possible delay gﬁsem is equal to 1. The prime sequences
correlation, with delay offset chosen uniformly at random are therefore 1-uniform.

over a period. Example 8. (Extended prime sequences [14]) By padding

Definition 7. We say that the Hamming cross-correlatil, p — 1 zeros after every “1” in a prime sequence, we obtain a

is e-uniform if sequence set with perige(2p — 1), Hamming weightp and
H _E.(H Hamming cross-correlation either 0 or 1. The mean Hamming
Hap(0) B Han D] (20) lation is/(2p — 1), which is roughly equal t
B, [Hoo(7)] <k, cross-correlation ig/(2p — 1), which is roughly equal to one

half. We can check that the extended prime sequences-are
forall7=0,1,...,L—1. A sequence set is calleduniform yniform.

if € is the smallest number such that each pair of distinct
sequences is-uniform. We say that a sequence sepagrwise Example 9. (Wobbling sequences [10]) Based on prime se-
shift-invariantif it is 0-uniform. quences, a class 6f /p)-uniform sequence sets is constructed
in [10]. The number of sequencesisnd the sequence period
In other words,H,;(7) is e-uniform if for all delay offsets is p*.
7, the percentage difference betweg&h,(r) and the mean o . o o .
is between—e and e. The notion of e-uniformity is the Example 10. (Shift-invariant and pairwise shift-invariant se-

same as the normalizéd, distance between Hamming cross4Uences [1]-[4]) All pairwise shift-invariant is by defiiain
correlation and the expected value. O-uniform. It is shown in [2] that the period grows exponen-

The sum of the Hamming cross-correlation over all relati#@/ly in the number of sequences. For pairwise shift-iremir
delay offsets in a period equats,ws, where w, and w, S€duUences, the period is also shown to grow exponentiaity wi

denote the Hamming weight af(¢) andb(t) respectively (cf. the number of users [4].
Lemma 3 in Appendix B). If we take the average over all The examples above are presented in an order such that

delay offsetsr, then the e-uniformity is decreasing. We can see that the sequence
W W eriod increases as we go down the list.
E, [ (r)] = 222, P o0 o o
Theorem 11. The sequences obtained by Construction 1 with
Hence, the definition of-uniformity in (20) can be written as period O(kp?) are (1/k)-uniform.
[Hap(v) — wows/L| <e Proof: The Hamming cross-correlation in Construction 1
wawy/ L - is obtained by Theorem 5. The mean Hamming cross-
A lower bound on the worst-case throughput similar to (17prrelation is
can be expressed in terms e@finiformity. Suppose that there w? ~ (kp— 1)2 _kp—1
are K active users and each of them is assigned a sequence L plkp—1)  p

from an sequence set of lengthand Hamming weight.  the maximal difference between Hamming cross-correlation
Suppose that the sequence setedsniform. By the union .4 the mean is

bound, a user can successfully send at least

kp—1 1
k+1-— =—|xp—-1
w— (K - 1)1+ )(w?/L) ==t
packets in each period. Individual throughput is lower trah < 1(p +1)
by p
kp—1 +1
— (K= 1)(1+e)f?, =5 P
f=(K=1)(+ef — (&)
where f is the duty factorw/L. It can be easily seen that for kp—1 1
fixed duty factorf and number of userk’, a smallere yields = D O(E)-
a larger lower bound on individual throughput. We thus have arO(1/k)-uniform sequence set of period
Example 6.(Constant-weight cyclically permutable codes [5]D(kp?). ]

In [5, p.948] Example 5, a protocol sequence set of periodThe trade-off between period length ameliniformity is

156 and Hamming weight 12 is presented. The number simmarized in Table |I.

sequences is 169. It is shown that the Hamming cross-To compare with the wobbling sequences, we can take
correlation is between 0 and 3, and the mean Hamming crossdghly equal tg. This yields CRT sequences with gre/p)-
correlation equal§12?) /156 = 12/13. The maximal deviation uniform and periodO(p®). The e-uniformity is roughly the
from the mean is3 — 12/13 = 27/13. This sequence set issame as wobbling sequences but the period is shorter than the
thus (27/12)-uniform. period of the wobbling sequences.
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| | Period [« ]

o = T APPENDIXA
rime sequences p
Extended prime sequencds p(2p — 1) 1 PROOF OFTHEOREM 3

CRT sequences O(kp?) O(1/k) In this appendixg denotes an element i, \ {0,1}, and

Wobbling sequences pt 1/p
Shift-invariant sequences| exponential inp 0 ag(ﬁ 7_2) - (g _ 1)71(7_1 _ 7:2) mod p (21)
, : .
TABLE | As defined in (5)), denotesg — 1)~'g mod p. We will also

TRADEOFFBETWEENPERIODLENGTH AND €-UNIFORMITY FOR VARIOUS

SEQUENCESETS FORp USERS use the indicator functiol defined as

1 if Pi
1(P) = | !s true
0 if Pis false

VI. OTHER APPLICATIONS
A. Extension to Multiple Data Rates

To support service with multiple data rates, we need pr
tocol sequences with different duty factors; a sequench wi i
larger duty factor is assigned to a user with higher data ratel) Ho1(71,72) equals the number of solutions to
requirement. The CRT construction can be extended to cope
with multiple data rates. For the sequengg, .(¢) generated

Recall thatz stands for the remainder afafter division byp.

Lemma 2. The Hamming cross-correlatiody; (71, 72) as
efined in(2) satisfies the following properties:

T = ay(11,72) ®p bgl(0 < z < 72) mod p, (22)

by g, we replace the characteristic $gt, , by forx=0,1,...,¢ — 1.
2) Let (r1,72) and (r{,7;) denote two (2-dimensional)
Zyp.q U (Z, 1,0)U...U(Z, k,0 N 172
st Zopa+(1,0)) Zoipa + (K, 0)) relative delay offsets. Ity = 7/ and » = 7 + kp
for some positive integet. We note that the above is a union for some integek, then
of disjoint sets. The resulting sequence has duty fatfor. .
The measure of uniformity however does not change; if the Hg1(11,72) = Hg1 (71, 72).-

original CRT sequence setdsuniform, the extended sequence
set is still e-uniform.

Proof: After setting the value of in (4) to 1, we obtain
B. Application to Multi-Channel Network

In this network, users can send data to each other, and we zg = (2 Sq 72) ©p 71 mod p. (23)
have a fully connected system topology. The total bandwid{fle want to show that the number of solutions to (23), for
is divided intOp subchannels and each subchannel is aSSigI"ggd__ 0, 17 e, q = 1, is the same as the number of solutions
to a user. Let the subchannel assigned to user denoted by o (22).
subchannet, for i = 1,2,...,p. Each user is also assigned considerx in two disjoint ranges: (i) < z < 7, and
a CRT sequence. The half-duplex model is assumed, so that -, < » < 4. In the first casex &, T2 is congruent to
each user cannot transmit and receive at the same time. USeIS, — 7, mod q. So, for0 < z < m, (23) is equivalent to
always receive in their assigned subchannel. In a perioH of
slots, user can pick one user, say usg¢rand send packets Tg=T Dy Oy T2 Bp 71 mod p (24)
to userj via subcarrier; using useri’s CRT sequence. In
one sequence period, uséreither: (i) receives packets in 4
subcarr?en‘ for thz whole period, or (ii())sends packF()ats to uger In. the second case, fof = 2,7 +1,...,¢ -1, (23) is
in L/p packets using subcarrigrand receives packets in theequwalent to
remainingL — L/p packets in subcarrier Tg =T O, T By mod p. (25)

The worst-case scenario occurs when usds sending
packets to some other user, and all the remaining users wariVe combine (24) and (25) in one line as
to send packets to userin the same period. Using CRT
sequences, we can show as in the multiple-access case that
the worst-case throughput between each pair of users ig lowggnce ¢ is not equal to 1 by assumption, we can divide by
bounded by a positive constant. (g—1) and obtain (22). This proves the first part of the lemma.

whereg and 7, are residues of andr, in Z,, respectively.

Tg—1)=—-Te®p 1 ®p (0 <z < 72) mod p.

VII. CONCLUSION The second part of the lemma is vacuoug & p. So we

A class of protocol sequences, called CRT sequences, whs§gUmes > p. (The caseq = p is excluded because it is

Hamming cross-correlation is highly concentrated aroured tassumed thag is relatively prime withp.) It is sufficient to
. . . - e

mean value is given. When CRT sequences are appliedPf@ve the statement far, = 7; and, = 7, + p, namely, the
the collision channel without feedback, we obtain a tratlediumber of solutions to (22) and the number of solutions to
between worst-case throughput :_:md the sequence period. Thej =ay(r,2+p) +b,I0<z <7 +p)modp (26)
generation of CRT sequences involves only simple modu-
lar arithmetics, and provides a low-complexity solution téor x =0,1,...,¢q — 1, are the same. We note thaf(r, 72)
multiple-accessing in wireless sensor network. is equal toa, (1, 72 + p). However, the arguments inside the
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indicator function are different. We divide the rangeaointo NHo<m<g
three disjoint parts: By Lemma 1, (22) has either 0 or 1 solution foK = < 79,
[ i <
X = {0,1,...,m— 1}, and eitherm or m + 1 solutions forry, < z < ¢. Therefore,
Hyi(m1,m2) € {m,m+1,m+ 2}.
/YQZ:{7’2,7’2-i—l,...,Tg—f—p—l}7 (II)(j§72<p
Xz :={ne+pnr+tp+l...,q—1} Suppose that (22) has no solution oK = < 7, i.e.,
Forz € A},
x 1 T2 < ag(T1,T2) + by < p. (28)
I(0<z<m)=10<z<m+p) =1

~We claim that (22) must have one solution forin the
Therefore (22) and (26) have the same number of solutlomowing range

for x in X;. Forx € X, both (22) and (26) have exactly one

solution by Lemma 1. Foz € X3, we have T <r<p+q. (29)

I0<z<m)=I0<z<m+p) =0, From the assumption aof < 72 < p, we deduce that

and hence (22) and (26) have the same number of solutions
for x € X3. In conclusion, the number of solutions to (22)

proof of the second part of the lemma. B more thanp integers. If the claim were false, we would have

Proof of Theorem 3:By the second part of the previousyg solution to (22) forr, < z < p + g, implying that
lemma, we only need to considey = 0,1,...,p—1. We first

q<p+q77—2 Spv

consider the_ case wher is between 1 angp — g — 1. We G < ayg(ri,72) < To. (30)
further consider two subcases.
Ho<nm<q Here, we have used the fact that the indicator function i) (22

Suppose that (22) has no solution for< 2 < 75. As the is equal to zero for in the range in (29). By adding (30) to
indicator function in (22) is zero fat = 7, o+ 1,...,¢—1,

(22) is reduced to p—q+1<b,<p—1
T = ag(m1,72) mod p. and reducing mog, we obtain

The number of integers ifm, 2 +1,...,¢ — 1}, sayd,

satisfies|d/p| = m. By Lemma 1, we have eithen or m+1 1< ag(mi,m2) +bg <72,

solutions to (22) forr > 7. S - -
Secondly, suppose that (22) has exactly one solution fgplch is a contradiction to (28). Thus, the claim is proved.

0 < x < 7,. The indicator function in (22) is equal to 1 for™f ¢ =P+ d:p+q+1,...,q —1, there are exactlyn — 1
0 <z < 7. Hence solutions to (22) by Lemma 1. Totally there aresolutions,

and thUSHgl (Tl,’TQ) =m.

0 < ay(r1,72) + by < To. (27) Finally suppose that (22) has exactly one solution(for
We claim that (22) has no solution for= 75, 7+1,...,G—1. * < T2- AS the number of solutions to (22) far = 7, 7, +
. 1,...,q—1is eitherm—1 orm by Lemma 1, the total number
Otherwise, we have . S
of solutions to (22) is eithem or m + 1.

T2 < ag(m,m) < 4, In any case, we see théf;, (1, m2) is eitherm, m + 1 or
which, after combining with the assumption thiat< b, < m+2. -
p—q— 1, yields

APPENDIX B

Ty < (lg(’Tl,T2> + bg <p-— 1.
PROOF OFTHEOREM4
This contradicts with (27) and proves the claim. For
We use the following property of Hamming cross-

gz <g correlation which holds for any binary sequence set in gen-

there are exactlyn solutions by Lemma 1. The total numbegral [15].
of solutions to (22) forx = 0,1,...,q — 1, is thusm + 1.

Lemma 3. Leta(t) andb(t) be binary sequences with period
HenceHy (11, 72) = m+ 1.

L and Hamming weighg. Then

(i) g <7 <p

By Lemma 1, (22) has either 0 or 1 solution foK = < 79, L-1
and eitherm — 1 or m solutions form, < x < ¢. Hence, ZHab(T) = ¢
Hgy(71,72) is within the range ofm — 1,m, m + 1}. =0

Forby = p—qg+1,...,p— 1, we again consider two
subcases. We include the short proof for completeness.
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Proof: counting the number of solutions to (22) ferbetween 0 and

I—1 I—1I—1 g — 1. Partition the range of into two disjoint subsets
Z;)Hab(T) = Z;) ; a(t)b(t — 1) X, :=1{0,1,...,p+q—1}, and
L-1 L-1 X2:{p+(jap+(j+1vaq71}v
= Z a(t) Z b(t —7) and consider the number of solutions to (22) forin X,
- and X, separately. Because< 7, < p, the indicator function
_ Z a(t) Z b(r) = I(0 < z < 72) in (22) is identically equal to O for € As.
' The number of solutions to (22) far € A, is exactlym — 1

. = T . by Lemma 1. The problem reduces to counting the number
The last equality follows from the assumption that the Hamj pairs (1,m) € 72 such that (22) has no solution for
ming weights ofa(t) andb(t) are bothg. i P

A ) x € X;. Observe that, depends orr; andr» through their
, E) By Thetl)qrem 2.No(j) is nonzero only whe = m Of giterence 7, — 7, mod p. We make a change of variables
j =m+1, whence, (71, 72) — (u,75) by definingu as
No(m) + No(m + 1) = pqg. (31)

On the other hand, we have

u:= (g —1)" (1 — 72) mod p. (34)

Our objective now is to count the number of ordered pairs

mNo(m) + (m + 1)No(m + 1) = ¢* (32) (u,72) € Z such that the equation
from Lemma 3. We can eliminat®,(m) from (31) and (32) z=u+by,I(0 <z < m)modp (35)
and obtain _
mpq + No(m + 1) = ¢, has no solution for: € X;. We note thab, does not depend
on 7> andu.
which impliesNy(m+1) = q(¢—mp) = ¢q. Substituting this  |f
into (31), we getNo(m) = pg — No(m + 1) = (p — ¢)g. This 0<u<q, (36)

proves the first part of Theorem 4. )
then (35) has at least one solution owee X;, namelyz =

2) Suppose thal, = 1,2,...,p — g — 1. We can set up & (, mod p) + p. Indeed, as» < p < z, the indicator function
system of two linear equations in three variablégm — 1), I(0 < = < 7) is evaluated to 0, and thus if we put=

Ng(m) and Ng(m +1): (v mod p) + p in (35), we have(u mod p) + p = u mod p,
m+1 which obviously holds.
> Ny(k) =pq On the other hand, if
k=m—1
m+1 p— bg § u < D, (37)
Z kNg(k) = q*. then (35) also has at least one solution aver X; no matter
fe=m—1 what 7 is. Indeed, for0 < 7 < u, we can sett = u. Then

The second equality is due to Lemma 3. Solving #gy(m) I(0 <z < 72) equals 0, and we see that= u is a solution
and Ny(m + 1) in terms of N,(m — 1), we obtain (7) to (9). to (35). Foru < 7, < p, we can sett = u + b, — p. Then
It remains to evaluat&V,(m — 1). The proof is completed by we haver < u < 7, and whencd(0 < z < 72) = 1. When
showing the following two claims: u<t <pandz =u+b, —p, (35 becomes

(i) For eachk =0,1,...,m — 1, there are exactly

by(p — by — q 33
a(p = by =) (33) From (36) and (37)H 1 (71, 72) is equal tom—1 only when
order pairs(ry,72), with 0 < 7 < pand7, = kp,kp+ wu=g,q+1,...,p— b, — 1. For each suchu, we now count

u+bg —p=u+ by mod p.

L,...,(k+1)p—1, such that (11, 72) = m — 1. the number ofr, € Z, for which (35) has no solution over
(i) For , =mp,mp+1,...,q—1, Hyi (71, 72) does not x € A). If = is a solution of (35), them: can take only two

equalm —1 forall 0 <7 <p. values, namely: or u+b,. Whenz = v is a solution,x must
Multiplying (33) by m, we obtain satisfyz > 7»; whenz = u + b, is a solution,x must satisfy

0 < x < 7». S0, (35) has no solution overc X if and only
if for all z € &7, we haveu < 7 andu + b, > 7. Putting
In the following, we complete the proof of part 2 in thehese two inequalities together, we obtaink m» < u + by.
theorem by showing (i) and (ii). Consequently, for each=q,g+1,...,p — b, — 1, there are
By Lemma 2 part 2, we notice tha&,, (m1, 72) depends on exactly b, values ofr, such thatH (7, 7) = m — 1. This
75 only through the residue af, mod p. Hence it is sufficient proves claim (i).
prove claim (i) fork = 0. For claim (ii), we count the solutions to (35) for< xrs.
Considerr, from 0 top — 1. We want to count the numberSinceI(0 < = < 72) is identically equal to 1, by Lemma 1,
of times thatHy, (1, 72) = m — 1, for 0 < 7,72 < p. We the number of solutions to (35) over< z < 7, is at leastm.
have shown in Lemma 2 th&,, (71, 72) can be computed by So H,; (71, 72) cannot bem — 1.

Ny(m —1) = mby(p — by — ).
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This ends the proof of the second part of Theorem 4. Secondly, as it is required thate X3, we must have: €

. . . X3, l.e.,
3) We set up the following system of linear equations in® ~
variablesN,(m), N,(m + 1) and Ny(m + 2): 0<u<gq (40)
m+2 Putting (39) and (40) together, we have the following
> Ny(k) =pg necessary condition oa.
k=m
m+2 p—bg <u<q. (41)

S ) =
k=m

After solving for Ny (m) and Ny (m+1) in terms of N, (m+2),
we obtain (10) to (12). So, we just need to evalustgm+2).
The evaluation ofV,(m + 2) relies on the following two
claims:
(i) For eachk =0,1,2,...,m, there are exactly

We note that the range af in (41) is nonempty, because
p—b, < g by assumptionu can take on any of thé,+q7—p)
value in (41), and for each suah 7 can assume values in
u—{0,1,...,p— by — 1}. Hence, the total number of pairs
(11,72) such thatd < 7» < g and Hy1 (11, 72) = m+ 2 is
(p— bg)(bg —(p— Q))
For case (i), we again use the fact ti#g; (71, ) depends
(p — by) (G + by — p) (38) on 7 only through the residue of, mod p, and establish
case (ii) only fork = 0. Let » be in the range] < 7 < p.
ordered pairgr;, 72), with 0 < 7y <p andkp < 7 < kp+¢, Consider the solutions to (35) separately0in< z < 7» and

such thatH g (11, 72) = m + 2. T <z <gq For0 <z <m,I0<x< ) is identically
(i) Fork =0,1,...,m—1, none of the ordered pair;,72) equal to 1. By Lemma 1, there are at most 2 solutions to (35)
with 0 < 7 < pandkp+q < 7 < (k+ 1)p, satisfies for z = 0,1,...,m — 1. Form <z < ¢, I(0 < = < )
Hyi(m,m) =m+2. is identically equal to 0, and by Lemma 1, there are at most
Since (i) and (i) exhaust all possible, ) € G, 4, We m — 1 solutions to (35) forr, < x < ¢. There are totally at
multiply (38) by (m + 1) and obtain mostm + 1 solutions to (35).

_ This completes the proof of Theorem 4.
Ny(m+2) = (m +1)(p — bg) (@ + by — p). P °
We prove case (i) and (ii) in the rest of this appendix.

By the second part of Lemma 2, it is sufficient to prove
case (i) fork = 0. Considerr, from 0 to ¢ — 1. Divide the

APPENDIXC
PROOF OFTHEOREM9

range ofz into two disjoint parts: In this proof, p is a prime number and is an integer
relatively prime top and strictly larger thar2p?, L = pq
A3 :={0,1,...,¢—1}, and is the sequence period, andis the multiplicative inverse of
Xy:={q,q+1,...,9—1}. pmod g, i.e.,yp = 1 mod ¢. The unique integer between 0

andg — 1 which is equal tar modg is denoted byr mod q).

As in the proof of the second part of this theorem, we make@,q translate of a subsétin Gp.q by (11,7) is defined as
change of variablér,, 2) — (u, 72) by definingu as in (34). ’

It is noted thatX,; consists ofmp consecutive integers, and S+ (r,m) = {(z,y) + (11, m2) : (z,y) € S}.

the indicator functiorl(0 < = < 72) in (35) equals 0 for all

r € X4. By Lemma 1, there are exactly solutions to (35)  Consider usey, wherei = 1,2,...,p — 1. If userg starts

for x € Xy. So, Hy1 (1, m2) equalsm + 2 if and only if (35) transmitting at timet,, then the channel-activity signal is

has exactly two solutions overc A3. It reduces the problem matched tos,(t) at time ty,. The receiver will never fail to

to counting the number of pairg:, 7»), with 0 <« < p and detect the presence of usgr meaning that if usey does

0 < 7 < g, such that (35) has exactly two solutions ovestart transmitting, the receiver can always detect thisigha

T € Xs. of status from idle to active. The only sources of error are
The only two candidate solutions for (35) are= v and (a) detecting a user but in fact that user is not active, apd (b

x = u + by. We investigate under what condition bathand miscalculation of the start time. We refer to the error inga)

u + by are indeed solutions to (3%). = u is a solution only false alarmand (b) assynchronization errar

if I(0 < 2 < 72) = 0. This implies thatu < 75. 2 = u + b, We now show that false alarm cannot occur. Suppose on the

is a solution only ifI(0 < z < 73) = 1. Henceu + b, < 72.  contrary that the channel-activity signal is matched t¢t) at

Combining these two conditions, we obtain time ¢, but userg is idle from timet, to to + L — 1. If this

happened, theg time indices inZ, + ¢, would be covered

by the protocol sequences of other active users. However,

This is possible only ifu + b, > p, and thus after reduction the c.ross-correlation between usgrand each other active
mod p, we have(u + b, mod p) < u. The first necessary user is upper bounded hy;/p| + 2, by Theorem 3. Because

condition for bothu andu + b, are solutions to (35) is userg is assumed to be inactive in this period, the number
of simultaneously active users does not exceed the maximum

p—bg <u<p. (39) (p+1)/2, and hence the number of time slotsZip+ t, with

u+by <1 < u.
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38 41 44 47 50 53 56 2 5

12 15 18 21 24 27 30 33 36 39 42 45 48 51
19 22 25 28 31 34 37 40 43 46 49 52 551
8
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4 7 10 13 16
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Fig. 4. Mapping fromZs7 to a3 x 19 array M3 19. The numbers 0 to 8 are highlighted

a packet or collision observed is no larger than

(o) +2)(P57) < (4 +2) (B5)
1 2 1
- (;ﬁg)%

1 2 1

<‘I(;+2—pz)%

_ z(&f
=305
In (42), we have used the assumption that 2p?. We note

that for all p > 3, the factor(p + 1)?/p? is strictly less than
two. We obtain

(42)

(La/p] +2) (1%1) <q

But g is precisely the total number of ones in a period gft).

The ¢ time slots indices by, + ¢ + 0 cannot be covered by

Proposition 1. (i) For any i andj, the (i, j+ 1)-entry is equal
to p plus the(i, j)-entry modpgq.

(i) Under the modified CRT correspondendg, , the
integerskp, for k = 0,1,2,...,q — 1, are mapped tq0, k).
They appear in the first row a¥1, ,.

(i) The numbers from 1 t@? — 1, except the multiples of
p, are located between colun®p + 1 and columng —p — 1
inclusively inM,, ,.

Proof: (i) The (0,1)-entry in M, , is labeled byp,
because

p+— (pmod p,yp mod q) = (0,1),

and~yp = 1 mod ¢ by the defining property of.
(i) For k=0,1,2,...,q — 1,

@, (kp) = (kp, kpy) = (0,k(1)) = (0, k).

any other(p + 1)/2 CRT protocol sequences. The channel- (iii) We have the following claim:

activity signalc(t) cannot be matched tg,(¢), and therefore
false alarm cannot occur.

For synchronization error, assume that uges idle from
timetg — L + 1 to t; — 1, and becomes active at timg.
Our objective is to show that the channel-activity signaias
matched tos,(t) at time ¢ty — 7, for any integerr between

1 andL — 1. The idea of showing that synchronization error

cannot occur is the following. If the channel-activity sin

were matched incorrectly te,(¢) att, — 7, then the receiver .

would observeg “1” or “*" at time slots indexed byt, —
7+ @ 1(Zy,.4)- Among these; time slots, sayb of them
come from a shifted version of,(¢), starting at timet,. We

then show that the remaining— b slots cannot be covered

2p < (kymod q) < gq—2p (43)
fork=1,2,...,p— 1.

We prove the claim by contradiction. Suppose that after
reduction modg, is between 1 an@p. Then, kyp mod ¢ is
equal top, 2p, 3p, ..., or 2p. Sinceq > 2p?, thesep numbers
remain unchanged after reduction mgdHowever,kvyp =
k(yp) = k mod ¢, and this contradicts the assumption tkat
is between 1 angd— 1. Now suppose that~y mod ¢) is equal
tog—2p+1,g—2p+2,..., 0r g — 1. Then, the value of
k~p, after reduction mod, is equal to

q—2p*+p, ¢—2p*+2p,..., Or g —p.

by the other active users. We divide the proof into several

propositions below.

In the modified CRT corresponden®g an element € Z,,
is mapped to(t mod p, vt mod ¢). In order to visualize the
mapping, we introduce a matrixi, ,.

Definition 8. Given relatively prime integerg and ¢, let
M, , be ap x g matrix whose (¢, j)-entry equalst if
i=tmodpandj =~tmodgq, fort=0,1,...,pqg — 1. The
rows and columns oM, , are indexed by{0,1,...,p — 1}
and{0,1,...,q — 1}, respectively.

Each integer from 0 tpq — 1 appears exactly once NI, ,.

An example forp = 3 andq = 19 is shown in Fig. 4. We pay

special attention to the integers from 06— 1, and want to
get a handle on where they are locatedMj ,. In Fig. 4, we
can see that 0, 3 and 6 are on the upper left cornévigf;o.

The numbers 1, 4 and 7 occupy three consecutive entries ir(ii) For g = 1,2,..

Sincekvyp = k mod ¢, this also contradicts thdt is between
1 andp — 1. This finishes the proof of the claim.

Let ¢ be an integer between 1 apd — 1 which is not a
multiple of p. We can write/ asmp + k for somem andk
between 1 angh — 1. By part (i), the location o in M, ,
is m steps to the right of the location d&f in M, ;. But &
cannot be located to the right of columnr-2p. The right-most
column inM,, , which may contair? is thusqg — p — 1. This
finishes the proof of part (ii). ]

Proposition 2. (i) Let S = {0,1,2,...,p*> — 1}, and S’ be

the image ofS under®;, , i.e., 8" = &, ,(S). We have

|Z, N (Zh + (11, 2))NS'| < 2 (44)

for any given(ry,2) and g # h.
.,p — 1, there are exactlyp ones in

row 1. The numbers 2, 5 and 8 occupy three consecutitre firstp? bits of s,(¢), i.e., there are exactly ones among

entries in row 2.

89(0)* 59(1)7 R Sg(p2 - 1)
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The quantity on the left hand side of (44) can be interpreted(ii) For g = 1,2,...,p, there are exactlyp ones ins,(t)

as thepartial Hamming cross-correlatigndefined as for t € P,.
p’-1 Proof: The elements i, can be regarded as a square
Z sq(t)sp(t + 7). submatrix in ap x ¢ matrix. The proof of part (i) of Prop. 3
t=0 is similar to that of Prop. 2 and is omitted. The second part

We only consider the number of overlaps in the figgt follows from the fact that every consecutive columns iA
time indices. The proposition asserts that the partial Hargm Which stands for the x ¢ matrix with characteristic sef,,
cross-correlation of two CRT sequences cannot exceed twdrm a permutation matrix, and hence contains exactyes.

Proof: (i) By part (i) of Prop. 1, for eactk between 0 u
andp — 1, the following p integers, Proposition 4. LetS’, P/, be defined as in Prop. 2 and 3. For
kk+pk+2p,... . k+(p—1)p, g=12,...,p—1, and 7 between 1 and. — 1, the subset

_ _ o B, - of time indices in {0,1,2,..., L — 1}, which satisfy
occupy p consecutive horizontal entries in thgh row of '

M, ,. Wrapping around the right boundary M, , is pre- sg(ty=1fort=0,1,....7 -1,
cluded by Prop. 1. sg(t)=1landsy(t—7)=0fort=7r,7+1,...,L —1,
A common element of, andZ;, + (71, 72) is in the form

contains®), (S NZ,), or &, 1(P, N1,) for somey.

(gt1,t1) = (htz + 71,t2 + 72) (45) Proof: Let 4,(t) be the acyclic shift of,(t) to the right
for somet; andi, between 0 ang — 1. If > + 7, is between by delay offsetr. The time indices i3, . correspond to the
0 andq — 1, then the first coordinates of the two order pairsL” in s, (¢) which is not covered by, (t). We consider two
in (45) are equal taits + 72, With t, satisfying cases: ()2 <7 < L, and (i) 1 < 7 < p2.

Case (i). When? < 7 < L, the firstp? bits in s, (¢) are not
covered bys,(t), and therefore3, . contains®/ (S’ N Z,).
If t2 + 72 is larger thary, thent; = ¢, + 7 — ¢, and the first ~ Case (ii). Recall that in the proof of Theorem 6, it is
coordinates of the two order pairs in (45) are equalde-2, mentioned that the intersection &f andZ, + (1, 72) is either
with ¢, satisfying empty, or an arithmetic progressions di‘hq with common
_ difference(g, 1). The intersection is non-empty if and only if
g(t2 72 = ) = htz + 71 mod p. (47) (11,72) quJaJS)(g, 1)k for somek = +1,+2,...,4+(q— 1).
Hence, hto + 71 may assume only two values mqg one Suppose that is a nonzero multiple op between 1 and
from (46) and the other one from (47). L&t, be thep x ¢ p*—1. By part (i) of Prop. 19/, (1) = (0,7/p). (7 is one of
array with characteristic séf,. We see that the elements inthe p left-most entries in the first row oM, ,.) In this case,
Zy N (Zy + (11, 72)) are located in at most two rows iA,. ®'(7) does not equalg, 1)k for any k € {1,2,...,p — 1}.
Sincep consecutive entries in a row @&, contain exactly one (We have used the assumption thas non-zero in this step.)
“1", at most two elements iff, N (Z, + (11, 72)) are covered This implies that the ones iA, with indices inP;/p are not
by §'. covered bys,(¢). Thus,
(i) Let A, be thep x ¢ array withZ, as the characteristic 1
set. From the remark before Definition 4, apyconsecu- Byr 2 @y T/pﬂI )-

tive columns inA, form a permutation matrix. For each Now suppose that is between 1 ang? — 1 but is not a

g(ta + 72) = hta + 71 mod p. (46)

b=0,1,....p—1, the time indices multiple of p. Let (ry,72) = @/, (7). Using similar argument
b, b+p,....b+(p—1)p as in the previous paragraph,(if;, ) & Z,, then
are p consecutive entries in a row iM, ,. Hence there is By 2 @, (Pr, NIy).

exactly one "1” among (b), sg(b+p),- ... s4(b+ (P~ 1)p).  Otherwise if (r, ) ¢ Z,, then the intersection of, and
Since this is true fob = 0,1,...,p — 1 we conclude that T, + (1, 72) equals

there are exactly “1” in s,(0), sy(1),...,s,(p* —1). ™

. Dk: k= 1,...,q—1}.
Proposition 3. For y = 0,1,...,q — p, let P, be the index {(g,1) (EREREER Al
set Consider thep columns inM,, , to the left of 7, namely the

time indices associated witR;, _, in M,, ,. The correspond-
ing time slots are not covered By (¢). Therefore,

Bgﬁ :—> @' I(P”lfz p )

= {(0,) €Gpqe: 0<i<p—-1ly<j<y+p-—1}

Let Py be the corresponding set of time indicesZp, under
the modified CRT correspondence,
Py = B L(P). "
Suppose that,(t) is actually transmitted at time&, and
Then the receiver tries to match the channel-activity signé
() For g 7 £, and delay offsetr, 2), with s,(t) at timety — 7 (See Fig. 5). If the channel-activity
IZy NV (Zh + (11, 72)) NP, | < 2. signal were mistakenly matched 4g(¢) att, — 7, then by the
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Fig. 5. The protocol sequencg (¢t) is transmitted at timeo. Sequences
s1(t) ands2(t) are transmitted at some other time. The receiver tries tatmat
c(t) with s¢(t) atto — 7.

previous proposition, either (i) the“1” in the first p? bits of
s4(t), which occur at time indices

(CI);Inqu(Ig) N {07 1) s ap2 - 1}) +t— T,
or (i) the p “1" in s4(¢), which occur at time indices in
o NIyNPy) +t—T,

for somey between 0 and; — p, are covered by the other
active users. By Prop. 2 and (3), each of the other activesuser
can contribute at most two overlapping slots. As there are no
more than(p — 1)/2 other active users, the total number of

ones that can be covered by other active users are at most

2 - (p — 1)/2, which is strictly smaller tharp. This proves
that the channel-activity signal cannot be matched, @) at
to— 7 foranyr =1,2,..., L — 1. This completes the proof
of Theorem 9.
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