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Concavity of the Feasible Signal-to-Noise Ratio
Region in Power Control Problems

Wing Shing Wong, Fellow, IEEE

Abstract—Signal-to-noise (SNR) ratio is commonly regarded as
a reliable performance measure for wireless communication sys-
tems. Knowledge of fundamental properties of the feasible SNR
region can facilitate the performance optimization of multi-user
wireless systems. This paper examines the concavity of the feasible
SNR region. In particular, it is shown that for systems with only
three users, the feasible SNR region is always concave. As concavity
for 2-D systems is well known and concavity for 4-D systems does
not hold in general, this result fills in a gap on this issue. A concavity
result for systems with a general number of users is also established
under certain technical conditions.

Index Terms—Concavity set, feasible signal-to-noise ratio (SNR)
region, power control.

I. INTRODUCTION

S IGNAL-TO-NOISE ratios (SNRs) are key performance in-
dicators for wireless communication systems. The SNR of

a user is defined by dividing the power of the received signal by
the sum of the power from all noises, including interfering trans-
missions from other users and thermal noises. These ratios are
typically analyzed under the assumption that interfering noises
form Gaussian processes. Although there are limitations of this
assumption, as reported in Sunay and McLane [1] and Chen and
Wong [2], the importance of these ratios as a performance mea-
sure for wireless systems has never been doubted.

For a wireless system with users, the SNRs form an -D
vector. In this paper, all users are assumed to be transmitting
with strictly positive power; hence, all the ratios are strictly pos-
itive and the SNR vector is a point lying in the positive orthant,

. The feasible
region defined by the SNR vectors is the focus of this study. For
the case where there are only two users, the feasible region can
be easily described as the region in bounded by the two axes
and the curve

(1)

for some strictly positive and whose values are dependent
on the channel gains. This feasible region is obviously concave
in the sense that its complement in is convex, so that the
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line joining any two points in the complement is contained in
the complement.

It is natural to ask whether this concavity property of the
feasible region holds in higher dimensional systems. This
has been a longstanding open question. Sung [3] provided
an interesting insight into this problem by showing that the
feasible region is log-convex. Subsequent papers dealing with
geometric properties of the feasibility region include Catrein et.
al. [4], Boche and Stanczak [5], [6], Imhof and Mathar [7], [8],
Stanczak and Boche [9]. In particular, it has been shown in [9]
that the concavity result does not hold for a general four user
wireless system. The situation for a general three user system
remains open.

In this paper, we investigate the concavity of feasible SNR
regions. Main results include the following:

1) The feasible SNR region of a general three user system is
concave.

2) Consider a system with a channel gain matrix that can
be represented as a product of a diagonal matrix with a
symmetric matrix. If the gain matrix has only one eigen-
value strictly greater than 1 and the remaining eigenvalues
strictly less than 1, the feasible SNR region is concave.

We will demonstrate by concrete examples that for systems
with gain matrices not satisfying the stated eigenvalue condition
the feasible SNR region is not necessarily concave. In fact, the
geometry of a general feasible SNR region can be extremely
complicated. For example, given any two points, and , on the
boundary that divides the feasible region and its complement in

, the line:

(2)

does not necessarily lie completely outside nor inside the fea-
sible SNR region. We will show by numerical examples that the
line can be divided into segments, some of which are outside
and the remaining ones are inside of the feasible SNR region.

The main tool used in establishing these results originates
from an idea proposed in a paper by Weinberger [10] in which he
provided a simple proof of a theorem of Lax [11]. The essence of
this idea lies in the construction of a special two-variable char-
acteristic polynomial. However, beyond this basic contraption,
there is little relation between the arguments used in [10] and
this paper.

The organization of the rest of the paper is as follows.
Section II presents a description of the basic model and as-
sumptions. In Section III, the two-variable polynomial alluded
to earlier is introduced and some of its fundamental properties
are described. Moreover, a basic concavity result for a general
number of users is established. In Section IV, concavity for a
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general 3-D system is proven. Numerical examples are provided
in Sections V and VI offers some concluding remarks.

II. BASIC MODEL AND BACKGROUND INFORMATION

The basic model discussed in this paper consists of trans-
mitter-receiver pairs, all sharing the same radio spectrum. Let

represent the channel gain between the -th transmitter
and the -th receiver. The channel gain matrix, , is
defined to be . (For any matrix or vector, , we use the
notation to denote that all components of are nonneg-
ative, to denote that and and to
denote that all the components are strictly positive). In prac-
tice, . However, to establish the results in this paper, it
is sufficient to assume that all diagonal terms of are strictly
positive and the interference matrix, , defined by

...
...

. . .
...

(3)

is primitive [12] ( is the by identity matrix).
Let denote a power vector and

a noise power vector. The SNR for
the -th user, represented by , is defined by

(4)

Let represent an -di-
mensional column SNR vector. For the discussions in this paper,
there is no loss in generality working with instead of .
More specifically, for a given interference matrix one can
view as a continuous mapping from to itself and de-
fine the feasible SNR region, , to be the closure of the
image set in . Let denote the set of limit points

for some . contains elements of
the form

(5)

for some .
Based on previous works reported in the literature, the struc-

ture of a feasible SNR region, , can be understood in the
following way [3]. For any point in , the open line seg-
ment defined by is in , but is not
in the feasible region if . It follows that is in the
boundary set of the feasible SNR region.

Definition: An SNR feasible region, , is concave if for
any two distinct points, and , on the boundary , the open
line

(6)

is outside of .

For subsequent discussions, let represent the spectral
radius of a matrix . If is an SNR
vector, let denote the corresponding diagonal matrix

...
...

. . .
...

(7)

Under this notation, is contained in if and only if there
exists a power vector, such that

(8)

III. BASIC ANALYSIS

Consider a fixed interference matrix, , with a feasible region
. Let and be distinct elements on the boundary .

Note that and . Let and represent the
corresponding diagonal matrices. It is clear that these matrices
have strictly positive diagonal elements. From (8), it follows that

(9)

where is spectral radius of matrix . For ,
, let be the diagonal matrix corresponding to the

point

(10)

It follows from definition that

(11)

Since the spectral radius of is exactly 1, from the
Perron–Frobenius Theorem, (8) has a strictly positive solution
for and, hence, is in . Due to the structure of the
feasible region, we obtain the following criterion that the point

lies outside of the feasible region if and only if

(12)

or equivalently

(13)

A mathematical tool of central importance in this paper is the
following two-variable polynomial:

(14)

which was adopted from [10] and was originally used to prove a
theorem of Lax in regard to concavity of the eigenvalue function.
The real roots of this polynomial are elements in such
that . We will show that the location of certain root
branch of implies concavity. Some salient basic features of
these real roots are summarized in the following lemma.

Lemma 1: For any there are at most real roots of
the form . For any non-negative there is at least one real
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root with . In particular, the point is a root of
and there is no root of the form for .

Proof: The coefficient of in is
which is equal to zero since is in . So the first statement
holds. For any non-negative , it follows that

(15)

Note that the inequality in (15) is based on a well-known prop-
erty of irreducible matrices (see, for example, [12]). Hence,
there is a real root, , for with

(16)

The last proposition statement follows from (9).

For any non-negative , define

(17)

The previous argument shows that defines a branch
of real roots of and that for any non-negative , has no other
real root, , such that

(18)

That is, is the rightmost root branch for non-negative
(see Fig. 1 for an illustration). Note also that is contin-

uous in . The usefulness of in proofing concavity result
is reflected by the following lemma.

Lemma 2: Let , , then

(19)

Proof: Since , it follows from
(17) that for any

(20)

The lemma follows by letting and multiplying both
sides of the inequality in (20) by .

Lemma 3: Consider a symmetric and a diagonal matrix
with strictly positive diagonal elements. The matrices and
have the same number of strictly positive (and strictly negative)
eigenvalues.

Proof: Since , the matrices and
have the same characteristics equation, and, hence, they have the
same set of eigenvalues counting algebraic multiplicities. On the

other hand, by the Law of Inertia for quadratic forms [13] the
number of strictly positive eigenvalues for and is
identical. Similar result holds for strictly negative eigenvalues.

Theorem 4: Suppose is of the form where is a di-
agonal matrix and is symmetric. If is nonsingular and has
only one strictly positive eigenvalue, then for any points and

in the boundary, , the polynomial in ,
, has only nonpositive real roots. Moreover, the

feasible SNR region of is concave.
Proof: Define as in (17). We will show that

for all strictly positive .
Let . By the Law of Inertia for

quadratic forms, the matrices , and have the
same number of strictly positive (and strictly negative) eigen-
values. Since and have the same char-
acteristic equation, it follows that has one strictly positive
eigenvalue and strictly negative eigenvalues. Let

. Define the polynomial as in (14). We can re-
gard as a polynomial in parametrized by and denote it by

(21)

Since and have the same set of eigenvalues,
the positive eigenvalue of is 1. If , is
a positive definite matrix. By the well-known result on positive
definite pencil of symmetric matrices, there exists a real con-
gruent transformation that puts and into
diagonal form simultaneously. In particular, the diagonal form
of can be assumed to the identity matrix. By using
the Law of Inertia one can show that the number of strictly neg-
ative roots of is equal to the number of strictly positive
eigenvalues of and in turn by Lemma 3, is equal
to the number of strictly positive eigenvalues of , or
equivalently . Note that:

(22)

So , like , has one strictly
positive eigenvalue and strictly negative eigenvalues.
Moreover, and
have the same set of eigenvalues which include the value

. Thus, has
strictly positive eigenvalue and a single eigenvalue at

0. It follows that has strictly negative roots. As
tends to 1, by continuity of roots to the characteristic equation,
we conclude that there are no strictly positive roots for
(0 is always a root for ). Now consider the function
defined in (17). Clearly, , which corresponds to the
fact that is a real root for . For small enough strictly
positive , must be greater than 1, due to the fact that
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Fig. 1. ���� � � implies concavity. � ��� has no strictly positive root.

Fig. 2. ���� � � implies convexity. � ��� has a strictly positive root.

cannot have a strictly positive root for (see
Figs. 1 and 2 for an illustration). Thus, holds for
all positive in a small enough neighborhood around 0. As
increases, the continuous curve cannot cross the line

as has no strictly positive roots. By Lemma 2 and
using the condition defined in (13), it follows that the feasible
region is concave.

In Section V we will show by numerical examples that if
has more than one strictly positive eigenvalue, the feasible SNR
region is not concave even if is symmetric. Since is
primitive, it has a simple root at 1, so there exists a nonsingular
matrix, , such that

(23)

where is an sub-matrix and
and are and zero matrices

respectively. It follows from Perron–Frobenious Theorem that
and . If

we write

(24)

then it follows directly from (23) that

(25)

It follows that

(26)

Recall that , hence

(27)

Lemma 5: Under the previous notation

(28)

This result can also be verified by direct computation and details
are omitted here.

Proposition 6: Consider a general primitive interference ma-
trix, . If the polynomial in

(29)

has only nonpositive roots, then for all strictly positive , the
property holds if and only if

(30)

Moreover, (30) holds if and only if

(31)

Proof: Let be an arbitrarily small but fixed strictly posi-
tive number. Let

(32)

If is equal to or , then for all large enough the domi-
nant term in the determinant in (28) is

(33)

and the sign of is equal to the sign of the expression in
(33). It follows that for all large enough , changes sign
as varies from to and has a real root between and
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. By continuity of the roots, as tends to zero, there is a root
branch that tends to . On the other hand, since

(34)

for a fixed, large enough positive , there is a one-to-one relation
between roots of with strictly negative real parts and
eigenvalues of with strictly negative real parts. There
are such eigenvalues of . We have also shown that
for large enough positive , has one strictly positive real
root in in a neighborhood of . Hence, this strictly posi-
tive root is unique and must be part of the root branch defined by

. As the neighborhood can be made arbitrarily small
as approaches infinity, for large enough positive ,
if and only if . By proposition assumption,
has no strictly positive root so cannot cross the ver-
tical line . Hence, holds all strictly positive if
and only if it holds for some large enough positive .

On the other hand, from (28) and (29) it follows that

(35)

Therefore, for all , if and only if
. To prove the last proposition state-

ment, note that

(36)

Hence, is the coefficient of the leading term of the following
polynomial in

(37)

One can repeat previous arguments by reversing the role of
and . In particular, one can define

(38)

as in (17) and show that for all if and only
if . By setting , one can check that

for all if and only if for all .
The last statement of the proposition follows.

IV. CONCAVITY THEOREM FOR 3-D SYSTEMS

When , the feasible SNR region is concave, that is, the
infeasible region in is convex [5], [6]. For , the con-
cavity result has been shown in [9] to be invalid in general. In
this paper, concavity of the feasible SNR region is established
for all 3-D systems. Consider first of all the case that is sym-
metric. Since has all diagonal elements equal to 0 this im-
plies the sum of its eigenvalues is 0. Other than the dominant
eigenvalue, the other two eigenvalues must be strictly negative,
since each one must have absolute value strictly less than the
dominant eigenvalue. Theorem 4 then implies that for all 3-D

systems with symmetric primitive interference matrix the fea-
sible SNR region is concave.

Theorem 7: The feasible SNR region of a 3-D power control
system with a primitive interference matrix is concave.

Before proving this result, we need to establish the following
lemma for 3-D systems.

Lemma 8: For any 3-D primitive interference matrix, , the
polynomial in

(39)

has a strictly negative root in addition to the root at 0.
Proof: Let

(40)

If has two complex roots, clearly . Other-
wise, two of the three real roots must be strictly negative which
also implies that .

Note that the ’s are strictly positive. If one of the ’s is
equal to 1, then one can show by direct verification that
is a root to , proving the lemma. On the other hand, results
from Perron–Frobenius theory implies it is impossible that all

’s are less than 1. Thus, without loss of generality, we can
assume that

(41)

(If not, we can reverse the role of and by considering
, which has the same number of strictly negative roots

as ).
Then

(42)

On the other hand

(43)

So has a root in the interval .

Proof of Theorem 7: Construct a continuous one-parameter
family of matrices by

(44)

Define a family of characteristic polynomials

(45)

The coefficient functions, and , are continuous. From the
proof of Lemma 8, one can see that these functions cannot
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Fig. 3. A 4-D symmetric example showing concavity property.

vanish since any has a root at zero and a strictly negative
root. Thus

(46)

The last inequality follows from Lemma 2 and Proposition 6
since the feasible region of is concave. The feasible
region for is, therefore, concave since .

V. NUMERICAL EXAMPLES

In this section, we present some numerical examples to illus-
trate the results reported previously. First of all, we note a 4-D
example which satisfies the eigenvalue condition stated in The-
orem 4. Consider the following system:

(47)

The eigenvalues of are

If

(48)

and and , then Fig. 3
shows the roots of the polynomial

(49)

If we redefine and so that

(50)

then the real roots of are shown in Fig. 4.
We also consider one case where is a nonsymmetric matrix

with only one eigenvalue with strictly positive real part. Let

(51)

Fig. 4. A 4-D symmetric example showing concavity property.

Fig. 5. A 4-D nonsymmetric example showing concavity property.

The eigenvalues are

For and defined as in (50), the real roots of are shown
in Fig. 5.

The assumption of a single strictly positive eigenvalue is a key
assumption for concavity. Consider the following symmetric
case with

(52)

The eigenvalues are . De-
fine and as in (48), then the real roots of are shown in
Fig. 6.
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Fig. 6. A 4-D symmetric example showing concavity does not hold.

Fig. 7. Same example showing concavity property.

However, when one sets

(53)

then the line segment joining the corresponding points on the
boundary of the feasible region exhibits a concavity property as
shown in Fig. 7 (the curve runs close to the -axis).

Fig. 8. Example showing the complexity of the feasible region geometry.

In fact, it is noted that the concavity property can be made
very drastic. If we label the two feasible points defined in (53)
as and , with

then the feasible point in the direction defined by the vector
is

(54)

The SNR of some of the users are reduced by a factor close to
10.

Finally, we note with one example that the geometry of the
feasible SNR region can be very complex. Consider a 5-D
system with

(55)

Then for and , the real
roots of

(56)
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is shown in Fig. 8. On close examination, one can see the line
joining the corresponding feasible points on the boundary is di-
vided into three segments. The middle segment is outside the
feasible region while the remaining two segments are inside the
feasible region. So neither concavity nor convexity holds even
for the lining joining these two points.

VI. CONCLUSION

In this paper, concavity results of the feasible signal-to-noise
regions are established. The results shed light on the complexity
of the geometric properties of these feasible regions. There are
several possible directions for future extension. In particular, in
Theorem 4, the symmetry and the nonsingular assumptions may
not be necessary.
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