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Abstract—A distributed fixed-step power control algorithm is information. Another class of distributed algorithms is
presented. It is a simple feedback adjustment algorithm using proposed by Wong and Lam [12]. In these schemes, centralized
only local information. In the ideal case where there is no power control is removed. but some sort of communication between

constraint, it is guaranteed that existing users will not be dropped ighbori s is stil R i lqorith
due to admission of new users. If it is infeasible to accommodate N€!9N0OrNNG cells 1S stll necessary. kecently, an algorithm

all of them, the new user will be blocked. When the constraint e€mploying fuzzy control is proposed [11]. It is fully

on maximum power is imposed, it is shown by simulation that distributed, and the transmitter power can be kept within
blocking a new call is more probable than dropping any existing g finite dynamic range. However, the CIR’s do not necessarily
calls, if the capacity is exceeded. Besides, its convergence propertyconverge to the optimal value. It seems that optimal CIR

is demonstrated. The convergence rate, which depends on theb | h t b hi di letelv distributed
step size, is studied through simulation. In addition, the issue of alancing cannot be achieved In a completely distribute

power quantization is addressed. manner.
Apart from CIR balancing, another approach is adopted

by Foschini and Miljanic [5]. The objective is no longer to
maximize the minimum CIR, but to maintain the CIR’s of

N ORDER TO achieve a high-capacity cellular commug]| jinks above a target value. In this model, receiver noise

nication system, efficient spectrum usage is of paramoystincluded in the definition of interference. This modification
importance. For a time-division multiple-access (TDMA)provides a more realistic model of the system and avoids the
frequency-division multiple-access (FDMA), or hybridissue of relative power scaling. In this paper, we will follow
TDMA/FDMA-based architecture, this implies the channelgis approach.
must be reused as compactly as possible so that the syste@ne major drawback of the CIR balancing approach is that
capacity can be maximized. However, the extent of chanfighen a channel becomes heavily loaded, the balanced CIR
reuse is constrained by the effect of cochannel interferenegg. | links may drop below therotection ratiq rendering
Therefore, one way to achieve a high system capacity is f§ channel unusable to all users. This problem also occurs
employment of an efficient channel allocation scheme. |R Foschini's and Miljanic’s algorithm. To deal with this
addition, transmitter power control can also be used to furth§ifyation, some removal algorithms have been proposed to
reduce cochannel interference. The latter approach will aﬁ)p users in order to maintain an acceptab|e CIR for some
addressed in this paper. remaining links [9], [14]. These algorithms aim at maximizing

In radio communication systems, the quality of a commyhe total system capacity without regard to other quality of
nication link is usually measured by means of daerier-to-  service (QOS) requirements. In practice, it is more important
interference ratiqCIR). Early work by Aein [1] introduced the to protect the quality of on-going calls than originating calls.
concept ofCIR balancingfor power control. The basic idea is|n another words, if admitting an originating call would cause
drive all the users to the same CIR. This solution is optimal iertain links to change from aactive (i.e., CIR greater than
the sense that the minimum CIR of all communication linkge protection ratio) state tnactive the originating call should
is maximized [14]. not be admitted. This issue is addressed in this paper.

For practical considerations, CIR balancing should be another issue that is considered is concerned with the
achieved by means of distributed algorithms, such as thgs@gmatic issues of power level quantization. In practical
proposed by Zander [15] and Granditial. [7]. However, in  systems, the transmitter power outputs are usually quantized
these algorithms, a global normalization factor is needggto discrete levels. The effect of quantization is studied by Lin
to scale individual transmitter power to a desired ranggt al. by using simulation [10]. It is shown that for a protection
This requirement weakens the distributed nature of theggio smaller than 20 dB, 32 levels are needed when the power
algorithms as the factor must be computed based on glopgﬁge is 30 dB. A different approach is proposed here, and
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this algorithm can perform nearly as well as CIR balancingower vector corresponding to the given vecRsr
Moreover, it can track short-term fading when the power

control sampling rate substantially exceeds ten times the pi(p) - L

maximum Doppler frequency. In this paper, we consider only E#i Gi; Py + n;

the effect of long-term fading, which is caused by path loss G612 p*

and shadowing. Convergence property of the algorithm will be 2 S G »61/2PZ* .
discussed. System-level performances in terms of call blocking g g T
and dropping probability will be evaluated. > §7'0(P*)

=6ty
IIl. SysTEM MODEL The upper bound can be derived similarly. O

In this section, the system model is presented along withIn a quantized power level system, one can specify a target
some relevant background results. Consider a cellular radénge with width25'®) dB for each user. If it is possible
system. To each communication link, we allocate a pair & find an unconstrained power vector such that the resulting
orthogonal channels (time slots or frequencies) for mobile-t6R for each user is equal to the mid value (in decibels) of
base (uplink) and base-to-mobile (downlink) communicatiothis specified range, then there exists a quantized power vector
Since there is no interference between the uplink and downligkch that all the individual CIR’s fall within the corresponding
channels, we consider power control for only the uplinkange. This observation motivates the design of the power
channels in this paper. However, the results can be appligahtrol algorithm described in the next section.
to the downlink channels as well. Another implication of Theorem 1 is that power quantization

Consider a set of cells in which a particular channel is usegduces system capacity. For example, consider an uncon-
at a particular instant. Led/ be the cardinality of this set. strained system with a given link gain matigk. Assume that
Let P; be the power transmitted by théh mobile. The link there exists a power vect® such thatl’; > ~; for all i. In a
gain from mobile;j to base station is denoted byG;;. The quantized power level system with the same link gain matrix
matrix G = {G,;} is known as the uplink gain matrix. Let G, one can only guarantee that there exists a quantized power
n:; be the receiver noise at base statiodin our model, the vector P such thatl; > § !~,. It is possible to construct
effect of adjacent channel interference is ignored. Thus, thgamples in which some users cannot be not accommodated
carrier-to-interference ratio (CIR) at base statiof; can be in the quantized system. In other words, the system capacity is
written as reduced. Although the amount of capacity reduction is difficult
to quantify, it is clear that larger quantization levels will result

;= L (1) in larger reduction in the capacity.
2w Gii B+
If I'; is greater than or equal to a prespecified valpie link IV. POWER CONTROL ALGORITHM
i is defined asactive The valuew,; is called theprotection In this section, the proposed fixed-step power control algo-
ratio of link <. rithm is presented. It is a discrete-time feedback adjustment

In mobile cellular systems, the link gains change constantiygorithm. The only information needed to adjust the trans-
in time. Thus, the link gain matrit= is actually a stochastic mission power of a mobile terminal is the received CIR at the
process. In our model, we consider a snapshot of the systeamresponding base station. Coordination among base stations
so thatG is treated as an/ x A matrix of random variables. is not required. A target window for the CIR is defined. If
the received CIR is below the window, the base station will
inform the mobile to raise its power to next level up. If the
received CIR is above the window, the power will be adjusted
In [5], [14], and [15], the transmission power level cajjownwards by one level. If it falls within the window, the

take on any positive real values. In practice, however, sorgBwer will remain unchanged. The following is a summary of
restrictions are inevitable. For example, the power level usgtb procedures in the algorithm.

cannot be infinitely large [8]. Besides, power levels usually
qualjtized into discrete values in real_sys_tem_s [10]._ In this Fixed-Step Power Control Algorithm
section, the effect of power level quantization is studied. _ o ) o 1)
As in [10], we assume that the power level is quantized E&ch mobile unit adjusts its transmission pouF Y in
in logarithmic scale. The difference between two consecutite (» + 1)th step according to the following rules:
power levels iss(®)(>0) dB. (We usez"®) to denote the sp™ if 10 < 51,
i i 4B — . i i Vi
decibel value ofz, i.e., z = 10logg z.) (n+1) _ ) 1 pn) e 1(n)
. P =S 67tP, if I > 6, 2
Theorem 1:If there exists a power vectaP* such that ’ ’
Ij(P*) = ~; for all 7, then there exists a quantized power
vector P such thats—1v; < I';(P) < &; for all 4. whereé > 1.
Proof: Given P}, we can always find one and only one One of the attractive features of the algorithm is its simplic-
guantized power leveP; such thgté*l/QEi* < P, < 6Y2PF. ity. Only two bits are needed for each power control command.
Assume thatP;" is quantized toF;. Let P be the quantized Thus, bandwidth for control information can be saved. Besides,

[ll. QUANTIZATION OF POWER LEVEL

P otherwise
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it is insensitive to CIR estimation error because the powerTheorem 2: If FE") > 62y, thenFE"*k) > 62, for all

change at each step depends only on a simple comparison riglex 0.

(This point will be justified in the section on numerical study.)  Proof: For: € A, see the equation given at the bottom
Although in our discussion the CIR is used as the qualif the page.

measure of a communication link, it is easy to modify our Similarly, for i € B, U C,

algorithm so that other quality measures can be used instead.

As an example, one can use the word-error-rate measure, pz(nJrl) > 5*111(") > § 2.

(proportion of received codewords that are detected to be in

error), which is readily available from the decoding process, . n -

as our quality indicator. With this modification, the qualitative Fori € D, and FE : 2 8%

behavior of the algorithm should remain unchanged while the (n+1) ) L

implementation can be simplified. Ly 2177 2 67 . 0

Theorem 2 states that a link wilhy originally greater than

6~ 2~; will not fall below this value throughout the evolution of
In this section, we will prove that the proposed algorithrthe power control algorithm. To ensure that all communication

possesses a property calledtive link protection[3], under |inks remain active during the control process, one should

the assumption that there is no maximum power constraigkt the value of the protection ratio of mobife ~,; to

Although this assumption is not valid in practical systemg—2,, So, an additiona(“® decibel margin is needed. As a

one can nevertheless obtain valuable insight on the behawighsequence, there is a capacity loss due to the more stringent
of the algorithm. The issue of finite dynamic range will bg|R requirement.

addressed in the section on numerical study.
Consider the situation that an originating call is admitted.
If there is no feasible power vector that satisfies the CIR VI. CONVERGENCE PROPERTY

requirement of all users, the CIR-balancing schemes and thg,, [13], the convergence properties of a general class of

Foschini-Miljanic scheme will force the CIR of all users to &,\ver control algorithms are proved. However, the fixed-step
value below their corresponding protection rafjg. All com-  5y44rithm does not fall into that class. In this section, we will
munication links become unreliable. Since these algorithms BFbve that the algorithm will converge if a feasible solution

not distinguish between originating and on-going calls, SOM§ists  Since the proof is complicated, some intermediate

on-going calls may be dropped. o results are stated as lemmas and placed in the Appendix in
In the fixed-step algorithm, the active links are protectedqer 1o keep the main idea of the proof simple to follow.

So, even if no feasible power vector exists, it is guaranteedgirq; it will be established that the power level of each user

that the CIR’s of all active links will be kept above a certaip, ¢ 5 [ower bound and an upper bound. Then, it will be shown

level. After several iterations, the originating call will discovef, 5t the power levels do not oscillate. As a consequence, the
that it cannot be accommodated with the desired QOS. Aﬁ)ewer vector must converge to a fixed point. ’

result, it will drop out of the highly contended channel out of Proposition 1: For each mobile terminal, the power level at

its own accord. each iteration stage of the fixed-step power control algorithm

To guarantee this important property, it is crucial that the |5y er hounded by a positive constant that depends only on
originating call should use a low enough power level when jf . gain matrix.

firstjoin_s the system, so that all existing Ijnks remaﬁn active at  proof For any mobilej, if there existsN such that

the beginning of the power control algorithm |ter§1t|on cycle. (N) > §=2v;, by Theorem 2r@f+n) > 52+, for all n > 0.
The convergence of the power control algorithm will be’ — (Ntn) Ly

examined. To facilitate our discussion, we partition the It implies that?; 2 §%yym;/ Gy for n 2 0.

mobile terminals into four subsetd,,, B,, C,, andD, at  If no such N eXiStS,Pj("H) = 6P§") for all n. Thus,

stepn. The membership relation is defined below P](") > P;O)_ O
Proposition 2: If there exists a power vectd® such that

I;,(P) =+ for all ¢, then for each mobile terminal, its power

V. PROTECTION OF ACTIVE LINKS

A, 0TI > 6y,

i~ (r) 4 . ; .
i€ { B !f Vi 1§ T3 (Sn‘s% (3) level at each iteration stage under the fixed-step power control
Cry M6y ST < algorithm is upperbounded by a constant which depends only
Dy,  otherwise. on the gain matrix.
F(n-l—l) _ G”(S_l_PZ(n)
2o AN} Gijé_lpg(n) + 25, ue, Gijpj(n) +2.p, Gijépg(n) + 7
> 572
> 6_1’7%
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Proof: Assume thatPi(") is unbounded from above. We Applying the same argument, one can prove that
claim that this impliesP;") is unbounded from above for all (Tite)
j. To prove this claim, suppose there exists a maopi(¢ 7 ) (B
J ) ) maxq Imax logg ™ < Ny
such thatP;” < c for all n. If there existsV such that i n2Tite P;
FEAT) > §72v;, then by Theorem 21“5N+n) > §2; for
n > 0. SincePi(") is unbounded WhiIdD;") is boundedl“](»")
can be arbitrarily small. It leads to a contradiction. If no such
N exists,Pj(") will go to infinity. Therefore, for any mobile e pa .
J (g #), Pj(") is also unbounded from above. Hax Zﬁa}i 985 Pi(n) <t

Since all the components d® are unbounded, for any
mobile i, we can find#; > 0 such thatP") > P Let  Note thatifNy =0, (6) is still valid. (In that casel™ = 0.)

To > max;t;. Therefore, (6) is valid forVy > 0.

Define Equation (6) implies thaP +) > P for ¢ > 0. It
means that4,, = ¢ for n > 7. Then Lemma 3 applies
No— { ) <Pi(0)> } and P will converge to a fixed poinP*. It contradicts to the

o =max{ max logsl —— | p- . )

i | 0<n<Ty p assumption thaP is unbounded. O
‘ The states of the fixed-step algorithm are represented by

Note thatNy > 0. First, consider the cas¥, > 1. the sequenc®(™. The sequence is said to lhsymptotically

Assume thatPi("“) > 6N0Pi("f), whereTy < m; < n;. periodicif there exist integers)V > 0 and7” > 1 such that
since P\ > P\, there exists;; such thati € D,., where for all n > N
0 < r;, < t;. By Lemma 4, there existg # i such that
Pj(mj) > 6N0+1Pj("j), wherem; < m; < n; < n,.

If there existsr; < m; such thatj € D,,, the argument
can be repeated, and, in general, we have

for ¢ > 0.
Therefore, there exist®™* such that

(6)

pP@ — pr+1).

The transition of the fixed-step algorithm depends only on
the current state and is deterministic. This implies that if the
plm) 5 gNo+e plne) 4) set of states is a finite set, then the power state sequence must
ke = k be asymptotically periodic if it does not converge.
for somez > 1 andmy < ny < n;. Proposition 3: If the algorithm does not converge, the

Now assume that ¢ D,., for 0 < 7, < mu. It follows that POWer vector of the mobile terminals is not asymptotically
- < 7y ..

‘ ‘ (my) < pl0) L periodic.

Cvlk : f/k andP,% Th rkf .rBy “) atnd the definition ofVo, Proof: Assume that the power vector oscillates with
e aenk>_.q. ereiore;my < tp < Nk iodT. whereT > 1. i P — ptT) for | h
By the definition of#; period7, where7 > 1, i.e., or large enoug

n.

Since the algorithm does not converge, one can find a mobile

i such thatP™ = sP™, wherem < n andn — m < T.

Since there exists; < t; such thatt € D, , the argument  Note thatP{™ = §P"~ ™). Therefore, there exists such
can be repeated to show thatan be arbitrarily large. Hence,thati € D,, wheren — T < 7 < m.
Ny + = can be made arbitrarily large also, which contradicts By Lemma 4, there exists a mobilg (j # ¢) such that
the fact that the amount of decrement in the power level E}(S) = 62P;t), wherer < s < m < t < n. Note that

P]Etk) Z P]gnlk) Z 6]\’0+xP15nk)

limited by the number of iterations, that i8]y + = < n;. t—s < T.
As a result, it is impossible thae{™) > §¥ p("™) where By repeating the argument, one can find a mobitich that
1o < m; < n;. Therefore, we have P,Sp) = é“fP,Sq) for any integerr, whereq > p andg —p < 7.
Since at each step, the power level can change by an amount
{ ] <Pi(T°+c)> } bounded byé, = is upperbounded b¥". Hence, this leads to
max ¢ max logs| —*——— < No (5) S
i n>To+c p a contradiction. |
‘ Theorem 3:If there exists a power vectoP such that
for ¢ > 0. I;(P) = ~; for all 4, then the fixed-step power control
Now, one can treaP("») as the initial vector, with the algorithm converges to a fixed poi®*, where §—1v; <
additional constraint given in (5). L;(P*) < é; for all 4.
For any mobilez, again one can find; > T, such that Proof: By Propositions 1 and 2, there is an upper and
Pi(“) > Pi(TO). Let 71 > max; ;. lower bound for the power vectdP. Since the power level
Define changes in fixed step, there is only a finite number of possible
values for the vectoP. If the algorithm does not converge,
N — { ) <Pi(T°)>} then it must be asymptotically periodic. This contradicts the
1 =max< max logs| 4| 7. . . .
i | To<n<Ty P previous proposition. Therefore, the algorithm converges to a
‘ fixed pointP*. It happens if and only i5~1y; < [';(P*) <
Note thatN; < Ny by (5). b~; for all 4. O
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rule is shown below

‘(n+1): Yo P(n)

A typical result is shown in Fig. 4. As we have mentioned
before, when Foschini’s algorithm is used, the CIR’s of all the
users converge to an unacceptable value. Every link becomes
unreliable. If the fixed-step algorithm is used, the CIR’s do
not converge to a single value. The CIR’s of the links, if
originally greater thad—2, (i.e., 23 dB in this example), are
kept above this value throughout the evolution. Thus, the link
quality of them are protected. For other mobiles, if there is no
significant improvement on CIR between successive iterations,
they should realize that the channel is heavily loaded and they
cannot be accommodated. In response, they should be dropped
out of the channel contention.

Fig. 1. Layout of interfering cells in the numerical study. The above discussion applies to the ideal case where there
is no constraint on the maximum power used. In practice, it
is not possible to transmit a signal with infinite power. Now

VII. NUMERICAL STUDIES we assume that there is such a constraint and we will show
at the dropping probability can be reduced if the fixed-step
orithm is employed.

Some simulation studies on the fixed-step power contrgl\
algorithm were conducted, assuming a standard hexagon :
g . g . g s before, we consider the same 16-cell system. When a
cellular layout with 16 cochannel cells (see Fig. 1) [12]. . . . .
. . hannel is available in a particular cell, we assume that the
The geographical location of the cells corresponds to a reuse. . . . D .
arfival time of a call is geometrically distributed with mean

ba tiern of seven. We approxmate. ef%h hexagonal cell ,bye("ilual to the duration of 100 power control iterations. The call
circular cell of the same area. Within each cell, there is

bile terminal icati ith the b ati - Iding time is also assumed to be geometric with mean equal
moblie terminal communicating wi € base stalion. 1§ he duration of 500 power control iterations. This initial

location of eac_h mob_ile ter_minal_is generated uniformly inSi%’ower used is set tF,;, — 0.01. Again, the receiver noise;
the cell. The link gainG;; is defined as is assumed 1T for all i. For acceptable quality, we require
the CIR of each link be greater than 25 dB (i-g,,= 25 dB).
Gy = Aij We compare the fixed-step algorithm with Foschini’'s algo-
! d?j rithm. In Foschini’s algorithm, we set the target vatwe— 26
dB. A 1-dB margin is provided for protection. If the CIR of a
whered;; is the distance between thith base station and thelink is less thany, and this situation sustains for a period of
jth mobile terminal and4;; is the corresponding attenuatiorfive iterations, we assume that the call is blocked or dropped.
factor. In this study, we consider only lognormal fading. In the fixed-step algorithm, we sef, = 27 dB and the
Hence, we assumd;; is lognormal distributed with mean 0step size5 = 1 dB. We set the target 2 dB higher than the
dB and standard deviation 6 dB for atnd;. Each component requirement (i.e.y0 = §%,) so that we have 1-dB margin for
of the initial power vector is generated uniformly betweeRrotection and another 1 dB for the intrinsic quantization noise.
0.001 and 1. The receiver noigeis assumed 10° for all . A link with CIR originally greater thany, is called active. If
Figs. 2 and 3 show some typical results about the convdis CIR falls below this value and this situation sustains for a
gence of the fixed-step algorithm. We set = o for all period of fiye iterations, we assume tha_\t it is dropped. For a
i and equal to 17 dB. The two figures correspond to tmgwly admitted call,. we adopt th(-a.followmg rule. If at théh
cases where the step size equals 1 and 2 dB, respectively. ff&tion, the following two conditions hold:
same link gain matrix and initial power vector are used. The 1) ™ < 5, dB;
maximum and minimum CIR of the 16 users are shown. It can2) FE"’_I) < FE") < 61/41“5"’_1)
be seen that the convergence rate is faster in the latter cage,assume that the call originated from mohilis blocked.
as expected. However, the tradeoff is that the target windguete that if no other user has power adjustmé}sﬁ) should
is larger. It means that for the samg, a larger value ofyy  be increased by a factor éfin successive steps. The second
is needed. This incurs a capacity loss. condition indicates that the improvement in CIR is much
Next, we consider the case where there is no feasible powefialler than expected. It is likely that the call cannot be
vector such that the CIR’s of all mobiles can fall within theaccommodated in the system. Therefore, the call should be
target window. This time we sef, equal to 25 dB. The blocked.
step size of the algorithm is 1 dB. Comparison is made with We run the simulation until 5000 calls had arrived. The num-
Foschini’'s and Miljanic’s algorithm [5]. Their power controlber of blocked calls and dropped calls is recorded. We consider
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Fig. 2. Evolution of maximum and minimum CIR (decibels) with step gizee 1 dB. The target window is also shown.
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Fig. 3. Evolution of maximum and minimum CIR (decibels) with step dize 2 dB. The target window is also shown.

three cases of the maximum power constraifit,. = 1, 10, than to be dropped. This effect becomes more obvious when
and 100. This corresponds to a dynamic range of 20, 30, artlde power constraint is less stringent. We have already shown
40 dB. (We have seF,,;» = 0.01.) In both algorithms, if a in Section V that no existing calls will be dropped H,,.x
power greater tharP,,.. is requested, we set the power tas infinitely large. However, if Foschini’s algorithm is used,
P,..x. Similarly, if a power less tha,,;, is requested, we many users are treated the same and existing users are not
set the power taP,,i,. specially protected.

The simulation results are shown in Table I. When the fixed- We have mentioned before that the system capacity is
step algorithm is employed, calls are more likely to be blockedduced if the fixed-step algorithm is used. This is due to the
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line is also shown.

TABLE |
CALL BLOCKING AND DROPPING PROBABILITY OF TwoO DIFFERENT POWER CONTROL ALGORITHMS WITH VARIOUS MAXIMUM POWER CONTRAINT

20 dB dynamic range 30 dB dynamic range 40 dB dynamic range

Foschini’s | Fixed-step | Foschini’s | Fixed-step | Foschini’s | Fixed-step
blocking probability 0.1964 0.2254 0.1622 0.2760 0.1374 0.2912
dropping probability 0.1076 0.0922 0.1730 0.0310 0.3226 0.0200
call loss probability 0.3040 0.3176 0.3352 0.3070 0.4600 0.3112

power quantization. However, if the dynamic range is large, In our simulation, we set, = 1 and 3 dB. The results
more calls are lost if Foschini’'s algorithm is used. The reasamne shown in Figs. 5 and 6. In the figures, both algorithms
is as follows. If the dynamic range is sufficiently large, everflave reached the equilibrium state. It can be seen that the CIR
mobile unit can freely choose its power. When the channelvariation of Foschini’s algorithm is relatively larger in both
heavily loaded, many users may be dropped simultaneoushses. Comparatively, the fixed-step algorithm is more stable
because all of them strive to maintain the target value, batd less sensitive to CIR estimation error.

they fail to do so. As shown in Fig. 4, the CIR’s of many
users converge to a value below the protection ratio. It turns
out that the theoretic capacity increase cannot compensate for
the possibility that more than one user is dropped at the samén this paper, we have investigated the performance of a
time. fixed-step power control algorithm. The issue of quantization

Finally, we investigate the effect of CIR estimation error of$ addressed and its ability in active link quality protection is
the performance of the algorithms. In practice, the estimatdegmonstrated. We have shown by simulation that the number
CIR will deviate from the actual CIR due to the effect obf dropped calls can be significantly reduced, especially when
multipath fading or other measurement noise. The effect thfe power constraint is not too stringent. This feature is highly
estimation error is modeled as follows. LEﬁ") and f§"> desirable from a QOS viewpoint.
be the actual and the estimated CIR of uset iterationn, In addition, the fixed-step algorithm is easy to implement.
respectively. Assume that It is insensitive to CIR estimation error because it relies only
on a simple comparison rule. Besides, we have proved that the
algorithm always converges if a feasible solution exists.

In this algorithm, there is a control parametawhich needs
wherewE") is a Gaussian random variable with mean zero ardproper setting. A largé implies faster convergence, but
variances2,. We assume that the estimation noise of differe@ more stringent requirement on CIR. Therefore, there is a
users and at different iteration steps are all independent. tradeoff between the system capacity and the convergence rate.

VIII. CONCLUSION

" (dB) = '™ (dB) + w!™ (dB)
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Fig. 5. Evolution of the maximum and minimum CIR (decibels) with CIR estimation error= 1 dB. (a) Foschini's algorithm. (b) Fixed-step algorithm

with step size6 = 1 dB. The target window of the fixed-step algorithm is also shown.

APPENDIX

In this Appendix, we present a sequence of lemmas whitfi» 7 = 0 for all ¢,
is part of the convergence proof of the fixed-step algorithrﬁ).

Lemma 2: If the receiver noise of all users equal zero,
then given any two power vectors

= (P, Ps,...,Py) and P’ = (P, P5,....P,), it is

Lemmas 1 and 2 are needed for the proof of Lemma 3. Lemi{faPossible that’;(P) < I';(P’) for all <.

3 says that it4,, is empty and a feasible power vector exists,

Proof: The lemma is obviously true if the number of

the algorithm will converge. Lemma 4 says that if the pOwépobile terminalsM is equal to two. Now we assume that it is

level of a mobile has increased before and has decrease
steps from iterationn to n, then there exists another mobile
whose power level has decreased 1 steps before. (Lemmas

fjue forM = k. We need to prove that it is true fad = k+1.
LetP = (P, P,..., Py1) and P! = (P, Py, ..., Pl )
be two power vectors such thBf(P) < T';(P’) for all <.

3 and 4 are needed for the proof of Proposition 2 and Lemma>incen: = 0 for all 4, scaling the power vector has no effect

4 is needed for the proof of Proposition 3.)

Lemma 1: If FZ(N) < é~; for all < and the algorithm does

not converge, then there exist¢ > N such thatFE") < v
for all « and alln > N’.
Proof. Fori € Dy

on the resulting CIR, i.el’;(P) = I';(cP) for all ¢ and any
constante. Therefore, without loss of generality, we assume
that

k k
Y G P =) GiriFl.
=1 =1

PN+ rGii(S-Pi(A) i If Py1 = P, = 0, then by the induction hypothesis,
’ > saies Gz‘ij(M + i) Gij(SP](A) +n;  there exists, wherel < i < k, such thatl;(P) > [;(P’).
< 57 This inequality still holds ifFP,; < P,QH. Therefore, we
=Y must havePy 1 > P ;.
< %- In consequence

Similarly, for¢ € By UCpx, One can prove
N+ < pV),

The above results imply thad,, = ¢ and 5,41 C B, for
al n > N.

Assumedi € B, for all n > N. Thus, P = pt™ for
k > 0. Since the algorithm does not conver@g, # ¢ for all

n > N. As a result, there existé’j(") which grows without

Gra1 ka1 Pr
[t (P) = M
Zj:l Gryr,i b
Grot1 i1 P44
%
=1 (P)

bound whemn goes to infinity. (Note that it does not implywhich contradicts to the assumption tHa({P) < I';(P’) for

thatj € D, for all n > N.) Thenlim,—.. I\ = 0 which all i.
leads to a contradiction. Therefore, there exidtssuch that Hence, it is true forM = k + 1. The lemma then follows
B, =¢foraln>N. O by the principle of mathematical induction. O
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Fig. 6. Evolution of the maximum and minimum CIR (decibels) with CIR estimation error= 3 dB. (a) Foschini's algorithm. (b) Fixed-step algorithm
with step size6 = 1 dB. The target window of the fixed-step algorithm is also shown.

Lemma 3: If there exists a positive integeW such that Lemma 4: If P(m) > 6“’P(") andj € D,, wherer <
F(A) < &v; for all 7 and there exists a power vectBrsuch m < n and z > 1, then there exist® # 7 such that
thatF (P) = for all 4, the algorithm converges to a flxedP(S) > 6T+1P(t) wherer < s <m <t < n.
point P* where§=1v; < I';(P*) < &, for all 4. Proof: If P(’) < 6 1P(m) then there exists such

Proof: By the given condition, there exists a POWEft ot « s < m and P(s _ §-1pim andj € D,. If
vector P* such thatl’;(P*) = ~; for all <. By Lemma 1, for ™ < (m) J
P> 5 1Pj , we Iets =7

sufficiently largen, FE") < ; for all . Therefore, we have ~J (m) )
Since P;"" > 6§ P;", there existst, wherem < t < n,

G P G P such thatP{” = 6P andj € A..

- < " ‘ Therefore
Yy G P 4 X Gy i
P(s) 2 6_1P(rn)
which implies that ! !
> 571 P
G”P(n) Gy Py G (P* p("))77Z _ 61;72Pj(t) ) 7)
>,2Gis P! pm Z#iGu g ZJ #G“P EJ i G“P o |
Denote the interference at base statjoby /; e.,
Assume that the algorithm does not converge. From Lemma
1, there existsN’ such thati € C, U D,, for all i and all ]J(") = ZGJ"“Pk(‘n) + ;.
n > N’. As in the previous proof, when tends to infinity, ket
there existsj such thatP{™ goes to infinity. So we cannot
find mobile : where: € C, for all n > N’. Otherwise, Sincej € D, andj € A;, we have
lim, o 1“( ) = 0, which is a contradiction. Thereforé’( )
becomes |nf|n|tely large for all whenn goes to infinity. ijP,(S) i
; ici — o <= (8)
As a result, for alli and sufficiently large: ® S
i
G PV < G by and
Ej;éi Gz‘jP;n) Ei#i G Iy )
Gji b
. - —— > §y;. 9)
This leads to a contradiction (see Lemma 2). O W
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By (7), (8), and (9)

G..Pgt)

J I(t)

J
Gy Pf”
= 7(t) cp_

Mg
(=),
< Ij Yi
I(t)ém—l
J

20 ¢ (o)
&1 < 1.

It implies that there existg such that

Since the power level is quantized into discrete levels wi

P > 5 pY.

step 6, we have

(1]
(2]

(3]

(4]

(3]

(6]
(7]

(8]
9]

PIES) > 6x+1P’5t)'
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