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Abstract

In geological subsurface modeling, large quantities of data are usually involved, which require extensive ef-
forts to process using traditional methods. In addition, 3D representations and spatial operations are essen-
tial for computerised processing. With the recent advance in Geographic Information Systems (GIS) and com-
puter technology, a wide range of spatial analysis and processing procedures for geological subsurface model-
ing are expected to be improved if 2D and 2.5D GIS functions are to be extended to handle 3D objects such as
subsurface layvers.

This paper gives a brief description of a 3D system for modeling geological subsurface information developed
at the Department of Geomatics Engineering, The University of Calgary. In this system, an octree data strue-
ture is employed to model 3D information due to its efficiency in Boolean operations, compactness in storing
data and capability of intelligent data access. Surface representations are used for visualisation purposes. An
algorithm for searching neighbour octants encoded by Peano keys is presented. Instead of dividing large octants
into smallest ones at the bottom level, it finds neighbour octants of both the same size and different sizes
based on original octants at all levels. In particular, large octants which are partially covered by other smaller
octants can be found.

The system has been developed on a Silicon Graphies Workstation and based on the GL (Graphics Library)

and “C" programming language.

I. INTRODUCTION

Geological subsurface modeling has been applied in
computer-assisted petroleum and mining explora-
tions (Turner 1990 and Hughes 1994 ). This tech-
nology is supported by advanced geological field ex-
ploration methods and subsequent data interpreta-
tion using geostatistic theory. The accumulatively
generated large volume of digital subsurface infor-
mation, increasingly demanding research, and ap-
plication practices require geoscientific information
systems for efficient management, analysis,
visualisation, and decision - making support.

Geographic Information Systems (GIS) have been
very successful in handling two dimensional (2D)
features such as parcels and road networks (Maguire
et al 1991). In addition, ohjects such as terrain sur-
faces are modeled using so called 2.5 dimensional
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representations where for each planimetric point in
the x-y plane there is only one corresponding value
in the z - direction. This is obviously one of the ma-
Jjor barriers for most existing commereial GIS to be
applied in geological subsurface modeling in which
multiple vertical strata layers must be represented
and analysed. A geoscientific information system
capable of handling geological subsurface data
should have its own data structures supporting so-
phisticated 3D analysis, strong topological relations
between strata layer objects, and attribute queries.

Research efforts have been made to develop such a
system since the last decade. For example, eleva-
tion information was treated as attributes in order
to display and query the third dimensional infor-
mation in 2D GIS (ESRI 1992). Polyhedra based
boundary representations were applied to model
subsurface objects and converted into octrees
(Tamminen and Samet 1984). Special problems in
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representing field exploration data in 3D GIS were
discussed in Harbaugh and Martinez (1990). A sys-
tematic survey of 3D representations was made by
Raper and Kelk (1991) and Li (1994) discussed ap-
plication issues of 3D data structures.

This paper introduces the general concept of a sys-
tem for geological subsurface modeling developed
at the Department of Geomatics Engineering of The
University of Calgary. An algorithm for searching
boundary oectants, one of many octree based func-
tions of this system, is presented in detail.

II. BACKGROUND
A System for Geological Subsurface Modeling

The presented system aims at 3D subsurface mod-
eling to improve oil, gas, and mining explorations.
Subsurface data are loaded into the system as 3D
multi-layers. For each grid point on the x-y plane,
depth values of top and bottom surfaces of each layer
are registered in the z direction to form the geomet-
ric description of the subsurface layers to which layer
attributes are attached. Efficient data structures
and modeling tools are provided for visualizing,
analyging, and managing the 3D geological subsur-
face data, The system is developed in C program-
ming language and based on a strong Graphics Li-
brary (Silicon Graphies, Inc. 1992) package which
takes advantages of hardware of Silicon Graphics.

Two modelers coexist in the system: a surface mod-
eler and an octree modeler. The surface modeler is
used to convert the input data into a surface model
according to the top-bottom layer-surface informa-
tion; while the octree modeler transforms the same
data into an octree model if necessary. Since the
surface model and the octree model depict the same
objects by using surface and solid geometric infor-
mation respectively, the efficiency of modeling func-
tions based on these two models is also different (Li
1994). For example, the surface model gives a rela-
tively realistic shaded surface for visualisation be-
cause subtle normal vector changes of the surfaces
can be represented. This is especially important
when the lighting function is used. On the other
hand, octants have six faces which, in turn, give only
six normal vectors parallel to three principal axes.
If the resolution of the octree model is set as the
same as that of the input data, there is no loss of
geometric information in the resulting octree model.

However, the graphic quality of the octree model
display is not comparative to the realistically shaded
surface model because of the restriction of normal
vector directions. Furthermore, layer-related topol-
ogy can be constructed in surface models.

One of the major advantages of octree models is ef-
ficient Boolean operations because of the simple
geometry and topology of octants. If encoded by
Peano keys (Laurini and Thompson 1992), some
spatial operations can be carried out at the bit level.
In this system, octree models are, therefore, used to
perform 3D spatial operations for analysis and simu-
lations. Consequently, the system maintains two
kinds of models for the same loaded object, namely
the surface model for visualisation and the octree
model for spatial operations.

Since most spatial operations are based on the octree
representation the efficiency of octree operations
often determines system responses to users requests.
In special cases of geological subsurface modeling
with large layer datasets, this is especially true.
Among others, one of the critical and frequently used
basic spatial operations is finding neighbour octants
for a given octant. An application of this basic func-
tion in subsurface modeling could be to find all
octants on the surface, for example, for a conver-
sion from an octree to a surface model. Surface
boundary lines can then be extracted from the
boundary octants. The same basic function is also
used in the operations to cut a subsurface model by
a plane or a half eylinder face so that the intersec-
tion profile of the solid surface model is exposed for
material queries and geological interpretations. Fig-
ure 1 shows one of the examples in geological sub-
surface modeling. “fences” are interactively defined
on a 3D subsurface model (Figure 1(a)). Spatial op-
erations are required to perform the intersection
between the “fences” (multi-planes) and the model.
The front part of the model is then removed so that
the defined profile can be visualized (Figure 1(h)).
In light of the above facts, it is necessary to develop
an efficient algorithm for finding boundary octants
in order to support quick system responses to users'
octree-based requests.

Peano Coding in Octree Representations

Octrees are a natural 3D extension from 2D
quadirees. An octree represents a 3D volumetric
object by recursively subdividing the object space
using a tree structure. At the root level is the object
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Figure 1. One of examples in geological subsurface modeling: interactive definition of “fences” on a
subsurface model (a) and removal of the front part of the model using spatial operations (b).

itself contained in a cube which is called universe.
The universe is subdivided into eight octants at the
next level, Oetants that are not entirely occupied by
the object are called partial (P) octants and are fur-
ther subdivided into smaller octants at the lower
level. This partition procedure continues until all
suboctants are either empty (E, no object material
in the octants) or full (F, octants fully occupied by
the object material). The procedure could also stop
when the desired resolution is reached. Details of
octree representations ean be found in Samet (1990)
and Li(1994), An extended octree model can be used
to describe objects with regularly shaped surfaces
with vertices, lines, and faces defined in octants
(Laurini and Thompson 1992).

Although there are various octree encoding meth-

ods, it 13 noted that a linear octree, a pointerless
structure first proposed by Gargantini (1982), lo-
cates any node in an octree by a unique key which
can be obtained by interleaving binary coordinates
of X, Y and Z. This can be implemented by using
Peano encoding. Figure 2 shows an example of fill-
ing a 2D space using the Peano N curve and 1D
Peano keys. The N pattern of the N curve repeats
itself until the 2D space is filled out. Each of the N
covers 4 pixels and pixels along the curve are en-
coded starting from 0, This N curve can be extended
in 3D space with its encoding scheme illustrated in
Figure 3 (a). Instead of 3D indices, an octree can be
encoded uging 1D Peano encoding. An octant O is
described by its Peano key and octant size: [P(O],
5(0)]. For instance, [8, 2] and [33, 1] depict two
octants with different sizes (Figure 3 (b)). If the tree
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Figure 1. (Continued)

structure (Figure 3 (c)) is used, the second param-
eter for octant sizes is unnecessary.

The Peano key can be generated by interleaving bi-
nary coordinates of (X, Y, Z). For example, an octant
with P(0)=14 has decimal coordinates (1, 1, 2). The
corresponding binary coordinates are (01, 01, 10).
Interleaving the binary coordinates in the order of
Z, Y, and X for every bit starting from lower bits
results in the binary Peano key 001110 which is 14
in decimal. This nature of the Peano keys makes
the storage of Peano keys compact and the conver-
sions between Peano keys and coordinates very ef-
ficient. In addition, neighbourhood searching in a
Peano encoded octree is efficient because of the char-
acteristics of the N curve (Laurini and Thompson
1992).

III. A PEANO-ENCODING BASED ALGO-
RITHM FOR SEARCHING BOUNDARY
OCTANTS

The first step of deriving the 3D surface informa-
tion from an octree representation of an object can
be simplified by finding all boundary ectants which
can be viewed as a 3D boundary of the object. The
detection and analysis of the 3D boundaries were
reported by a number of researchers (Liu 1977, Arzty
et. al. 1981, and Ibaroudene et. al. 1990). Using re-
peated elimination of the interior of surfaces,
Atkinson et al. (1985) introduced an algorithm by a
linked list and followed by a node expansion. These
algorithms are based on octants of the minimum
size in linear octrees, that is, octants at the lowest
level. Any octant larger than that has to be divided
recursively until the lowest level is reached. In
visualisation and analysis of geological features,
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Figure 2. N curve and Peano encoding.
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S:  South, negative Z direction;
W:  West, negative Y direction;
F:  Front, positive X direction; and
B:  Back, negative X direction.
If d is one of these six directions, the opposite direc-

tion is denoted by ' . In an octree with n levels, an
octant, denoted as ), generated after | subdivi-
sions has a grouping factor g(0) = (n—i), which is
an aggregative indicator of the octant.

d_ face is defined as the unique face of the octant

() in the direction d{N E,B,S,W.F}. The octant which
has the same size as O and shares the d_ face of

O is called an exact neighbour octant of O and de-
noted as (. The shared face is called d' _ face of

(€)

Figure 3. Peano keys for octree encoding and an example.

such as coal, rock, oil and gas layers, 3D boundaries
may consist of octants at different levels. It is then
natural and efficient to have an algorithm for find-
ing the 3D boundaries based on multi-level octants.
The 3D boundaries thus formed contain fewer
octants and may result in a decrease of processing
time, which is eritical in geological applications with
large datasets.

Some Definitions

An octant face or its normal vector could point to
one of six directions, denoted by

N:  North, positive Z direction;

E:  East, positive Y direction;

0,. O is called a large neighbour octant of O if
d_ face of O is shared by a part of d'_ face of

O; which has a greater grouping factor and O, big-
ger size.,

An octant O is called a common octant of O, and
0, if both of them are inside Q. The smallest com-

mon octant of O, and (), with a grouping factor k
is called the kth degree common octant.
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Determination of Exact and Large Neighbour
Octants

Neighbour octants are searched in each of the six
directions. To find neighbour octants of a given oc-

tant @ in direction d, the first step is to find the
grouping factor k of the common octant which con-

tains the octant O and the neighbour octant O, or
0y . Let g be the grouping factor of O, the follow-
ing iterative formulae can be used to caleulate k:

Fy(0)= P(O) (initial value)
a, = P,(0)mod(8)
P (0)=P(0)/8

i=1L2,....n—1 (1}

(integer remainder)

(integer division)

This iterative procedure will be terminated until a,

matches one of the neighbourhood position param-
eters A for the desired direction d in Table 1. The
grouping factor of the common octant is then

k=i+g+1 (2)

Table 1. Neighbourhood position parameters A
corresponding to six directions

Divection (d) A
N 0,2,40ré
E 0,1,4,0rbh
B 4,5 60r7
s 1,350r7
W 2,3, 60r7
F 0,1,20r3

The above grouping factor (implicit information of
the size) of the common octant is dependant on a)

the position of @ and b) the nature of the subdivi-
sions during the octree generation. The common
octant is sufficient to contain all possible neighbour

octants of (@ in direction d.

The second step is to find O, or 0. Since g is
smaller than k, O and O, belong to the kth com-

mon octant O,. The Peano key of O, can be calcu-
lated as

P(O,)=
k=2
P(O)+direce (8" - 8)
=8
k-22g @
P(O)+direce ge atherwise

where direc is a function of the direction d:

direc(1,2, 4, -1, -2, -4) for (N, E, B, S, W, F) respec-
tively.

Assume that g' be the grouping factor of the large
neighbour octant O} (g'< k). The Peano key of O}
has the following form:

P(O}) = P(Oy) - P(O;) mod(8 ) (4)

where P(Q,) is defined in (3).

To demonstrate the above searching scheme, a
quadtree is presented in two dimensions in Figure

4, using linear quadtree Peano keys P((}) for all

full quadrants. Equations (1) to (4) are applied to
find both exact and large neighbour quadrants in a
desired direction. Because the equations are derived
for octrees, the number 8 in (1) to (4) has to be
changed to 4 in order to make them applicable to
quadtrees. Position parameters Ain Table 1 have to
be restricted to the range of 0, 1, 2, and 3 as well.

Example 1

Figure 4 illustrates a part of a quadtree map. Using
the above scheme, the northern neighbour

quadrant(s) P(Q,) or P(Qy) of P(Q)= 47 should
be found. According to Figure 4, g =0, P,(Q)=47
and direc=1.

Step 1: determining the grouping factor of the com-
mon octant

i=0,

a, = P,(@)mod(4) = 47mod(4) =3,

a, # 0 or 2(position parameters A for N in Table 1)
P(Q)=P,(Q)/4=4T7/4=11.

i=1
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Figure 4. A part of a Peano-encoded quadtree.

a; = Pi{Qymod(4)=11mod(4) =3,
ay #0er2,
P(Q)=P(Q)/4=11/4=2.
i=2
a, = P,(Q)mod(4) =2mod(4) =2
(a, =2, it is a match and the iterative procedure
stops)
k=2+0+1=3

The size of the common quadrant is 8 times

(2% =29 of the quadrant Q.
Step 2: finding neighbour quadrants

Since k=2=3-=2=12 g =0 the first equation in
(3} is used.

1
P(Q,)= P(Q)+ direc -{4"'1 _24'}
i=0
=47+1e(16-1-4)=58
There is no full quadrant with Peano key 58 in Fig-
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ure 4. The large quadrant of Q is to be searched.

g=g+l=1

P(Q)) = P(Q,)~ P(Q,)mod(4*)
=58—-58mod(4)=58-2=756

Again, the quadrant with Peano key 56 is not a full
guadrant.

g=g+2=2
P(Q))=P(Q,)— P(Q,) mod(4*)
=58 -58mod(16)=58-10=438
This quadrant ( P(Q} ) = 48) is a full quadrant and
the large neighbour quadrant of ().

A linear octree lists all full octants. If we start from
the smallest octants and @, is found for an octant

O in the linear octree, octant O is not on the bor-
der in direction d. Otherwise, the large octant has

to be searched. In general, large octants 0" exist in
three directions (Table 2) depending on the remain-

der of the Peano key divided by 8 ( P{(O) mod(8)).
Observing the relationship between Peano keys in

Figure 3(a) and the definition of directions, it is not
hard to understand Table 2, It can be concluded that

() is a boundary octant in the checked direction d

if neither O, nor O is found in the linear octree.

Algorithm for Detecting 3D Boundaries

Each octant of a grouping factor g in the linear octree
is initially assigned a border parameter 4° in each
direction (4*, 4%, 4*, 4%, 4% 4*) for (N, E, B, S, W,
F). If the border parameter in direction d remains

4% it indicates that the octant is not covered by
any neighbour octants in this direction; if the pa-

rameter is 4’ (g < j <£0), the face of the octant in
direction d (d_ face) has a part as 3D border with

an area of 2°/; if the parameter is 0, the octant is
covered completely by neighbour octants. Therefore,

starting from the initial parameter 4°, each direc-
tion is checked if there is any full octant in the lin-
ear octree covering the octant. In cases where a full
neighbour octant with a grouping factor j is found,
the border parameter in this direction is decreased

by 4'. This procedure is performed for all six direc-
tions and all grouping factors. After processing, any
octant with border parameters of zero in all direc-
tions is considered as interior octant and deleted
from the linear octree. The resulted linear octree
consists of full boundary octants only. It should be
noted that octants on the boundary could be either
the smallest octants or octants with higher group-
ing factors.

Table 2. Possible large neighbour octants in
different directions

Peano((Q) mod(8) Directions of possible

large neighbor octants

SWB
NWB
SEB
NEB
SWF
NWF
SEF
NEF

=1 O N e L0 b =D

Example 2

Table 3 demonstrates the entire procedure for find-
ing boundary quadrants of the quadtree in Figure
4. The first two columns give the Peano keys and
corresponding grouping factors g of all full quad-
rants of the linear gquadiree. Each of quadrants has

an initial border parameter 2* in four directions in
the third column.

The searching starts with neighbour quadrants of

the lowest level with the grouping factor j =0.Ifa
guadrant is found in a desired direction, the corre-
sponding border parameter in the fourth column is
reduced by 2/ = 1. For example, the quadrant of
P(Q) =24 has two neighbour quadrants of j =0 in
North. The border parameter in North is reduced

from2t0 0 (2' —2° -2°).

With j=1and j =2 in the fifth and sixth column,

neighbour quadrants searched become larger. How-
ever, the operations on the border parameters re-

main the same. For instance, at j =1, the quad-
rant of P{Q)=24 has a large neighbour
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L o .
(Py(Q)=48) in East. The border parameter be- 3D data structures and associated spatial operations
comes (). Please note that if Q, or Q: is found for  have become important issues as GIS are increas-
i ingly applied in extended areas where the third di-
@, border parameters for both Q and @, or O  mension information is critical, such as geological
are updated. subsurface modeling. In many cases multi-represen-
tation-based systems are unavoidable in order to
The final status of border parameters are listed in  take advantage of different data structures. The
the last column of Table 3. Quadrants with border  border search algorithm introduced in this paper is
parameters 0 in all directions are interior quad-  based on octrees using Peano encoding, which sup-
rants and subject to be deleted. The remaining quad- ~ Port spatial operations and are complementary to
rants with Peano keys and grouping factors describe ~ Surface models for data visualisation.
the border of the quadtree:

The presented algorithm finds neighbour octants of

BORDER = {(24,1), (28,0), (31,0). (36,1), (44,0), hoth the same size and different_si_zes. ':Hithcrut this,
large octants would have to be divided into smallest

(47,0), (96,0), (98,0),(104,1), (144,0), ones at the bottom level in order to search neighbour
(147,0).(156,1), (192,2)} octants and may not be computationally efficient,
especially when partial boundary octants are

searched. The general discussions about the

I[V. CONCLUSIONS neighbourhood relations can also be used for other

Table 3. The entire procedure for searching boundary quadrants of the quadtree in Figure 4
Initial Value i=0 j=1 E_2]

Border Border Border Border

Parameter 28 Parameter Parameter Parameter
P_code | Grouping NESW NESW NESW NESW
Factor g

24 1 2222 0222 o022 o022
28 )] 1111 1001 1001 1001
30 0 1111 0000 0000 Deleted
31 0 1111 1001 1001 1001
36 1 2222 2022 0022 ooz2
44 0 1111 0110 0110 0110
45 0 1111 0000 0000 Deleted
47 0 1111 0110 0110 0110
48 2 4444 22232 0000 Deleted
96 0 1111 1001 1001 1001
98 0 1111 1000 1000 1000
104 1 2222 2221 2001 2001
144 0 1111 0110 0110 0110
145 0 1111 0000 0000 Deleted
147 0 1111 0110 0110 0110
148 1 2222 2202 0000 Deleted
156 1 2222 2222 0220 0220
192 2 4444 4444 4402 4402
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spatial octree-based spatial operations.

ACKNOWLEDGMENT

Programming efforts made by Mr. L. Qian, Ms. Y. Chen
and Mr. F. Dong and Figures drawn by Mrs. J. Tian are
appreciated. The authors thank Mr. D.J. Hughes for his
constructive discussions and comments, The research is
sponsored by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) and Geological Sur-
vey of Canada.

REFERENCES

[1]

[2]

(31

[4]

[5] «

[&]

Arzty, K., G. Frieder and G.T. Herman, 1981. The
Theory, Design, Implementation and Evaluation
of a Three-dimensional Surface Detection Algo-
rithm, Computer Graphics and Image Processing,
15:1-24.

Atkinson, H.H., 1. Gargantini and M.V.5.
Ramanath, 1985. Improvements to a Recent 3D-
border Algorithm, Pattern Recognition, 18:215-226.
ESRI 1992, ArcCAD GIS for AutoCAD Provides
Full Complement of GIS Tools within AutoCAD En-
vironment. ARC News Spring 1992,

Gargantini, 1., 1982, Linear Octrees for Fast Pro-
cessing of Three Dimensional Objects, Computer
Graphics and Image Processing, 20:365-374.
Harbaugh, J.W. and PA. Martinez 1990. Two Ma-
jor Problems in Representing Geological Well and
Seismic Data in Petroleum - Bearing Regions via
3-D Geographic Information Systems. in Three Di-
mensional Modeling with Geoscientific Information
Systems. Kluwer, Dortrecht, the Netherlands,
pp.291-320.

Hughes, J.D. 1994, Interpretive Three-Dimen-
siomal Modeling and Geological/economic Analysis
of Layered Sequences. Proceedings of International
Association of Mathematical Geologists, Mt.
Tremblant, Quebec, October, 1994,

(7]

(8]

(9]

(10]

[11]

(12]

[13]

[14]

[15]

[16]

17]
18]

119]

Ibaroudene, D., V. Demjanenko and R.5. Acharya,
1990. Adjacency Algorithms for Linear Octree
Nodes, Computer Vision, Graphics and Image Pro-
cessing, 8:115-123.

Jones, C.B., 1989, Data Structures for Three-dimen-
sional Spatial Information Systems in Geology, In-
ternational Journal of Geographical Information
Systems, 3(1115-31.

Laurini, R. and D, Thompson, 1992, Fundamen-
tals of Spatial Information Systems. Academic
Press, pp.507-511.

Li, R., 1994, Data Structures and Application Is-
sues in 3-D Geographic Information Systems,
Geomaticn, 48(3):209-224

Liu, H.K., 1977. Two- and Three-dimensional
Boundary Detection, Computer Graphics and Im-
age Processing, pp.123-134.

Maguire, D.J., M.F. Goodchild and D.W. Rhind
1991. Geographical Information Systems: Principles
and Applications. Longman Scientific & Technical,
England.

Meagher, D., 1982. Geometric Modeling Using
Octree Encoding, Computer Graphies and Image
Processing, 19:129-147.

Meier, A., 1986. Applying Relational Database
Technigques to Solid Modeling, CAD,18(6):319-324.
Raper, J.F. and B.Kelk 1991. Three Dimensional
GIS. In Geographical Information Systems: Prin-
eiples and Applications, edited by Maguire et al.,
Longman Scientific & Technical, England, pp.299-
a1y.

Samet, H. 1990. The Design and Analysis of Spa-
tial Data Structures. Addison-Wesley Publishing
Company, Inc., Reading, Massachusetts, 493p.
Silicon Graphics, Ine. 1992, Graphics Library Pro-
gramming Guide. SGI, Mountain View, CA.
Tamminen, M. and H. Samet, 1984. Efficient Octree
Conversion by Connectivity Labeling. Computer
Graphics, 18(3):312-318.

Turner, A K. (ed.) 1990, Three Dimensional Model-
ings with Geoscientific Information Systems. Kluwer,
Dortrecht, the Netherlands.



