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Abstract

Following a brief discussion on various aspects of data quality, possible methods are examined for the detection of

errors in a spatial database.

Using examples, we introduce the consistency checking method based on spatial

relationships among neighboring objects and attribute relationships among map layers from different sources.
Using logical relationships among spatial neighborhoods and among attribute data from different sources, it is
desirable to build an error detection mechanism in a spatial database. This mechanism can be automated and has
the potential to be one of the powerful tools for error detection and correction suggestion in a spatial database.

I. INTRODUCTION

Data quality can be assessed through data accuracy
(or error), precision, uncertainty, compatibility,
consistency, completeness, accessibility, and
timeliness as recorded in the lineage data (Chen and
Gong, 1998). Spatial error refers to the difference
between the true value and the recorded value of non-
spatial and non-temporal data in a database. Attribute
error is more complicated than other types of spatial
errors. It is related to scale of measurements. At
one scale of measurement, the difference may be
regarded as error while not at another scale. For
example, an elevation of 497 m recorded in the
database with its true value being 492 m will be
considered erroneous at the ratio and interval scales
but accurate in a general category such as an elevation
class between 450 and 500 m which is at the nominal
scale. However, sometimes the true value is not
known, error can not be evaluated. Under such
circumstances, uncertainty is used. Statistically, we
use the average from multiple measurements to
estimate the true value and the standard deviation of
the multiple values as an indicator of the level of
uncertainty. Therefore, in order to know the
uncertainty of a value, multiple measurements are
necessary. For example, a coastal line — the boundary
between ocean and land, is uncertain as it changes
constantly with time due to such factors as tides and
ocean waves. There are more causes of data
uncertainty than that the truth is not measurable or
there is no truth at all. The conceptual fuzziness of
an attribute or a category, which represents the level
of data generalization, could also cause data
uncertainty. For example, one can not tell what is
the true density of a polygon in a database when its
category is “high density residential.” Similarly, one

can not tell exactly which tree species are contained
in a class of “evergreen broadleaf forest” due to its
high level of abstraction.

Attribute error has been studied for many years.

Particularly in remote sensing image classification, a

relatively complete procedure exists for classification

error analysis (Jensen, 1996). Chen and Gong (1998)

divided the classification error analysis into 5 steps:

o determine the sampling method for ground truth
data collection; Methods include systematic
sampling, random sampling, stratified sampling
and systematic unaligned sampling, etc.

e determine the sample size;

o determine the attribute of sample location; this is
usually done by field survey or the use of more
accurate data sources such as aerial photo
interpretation.

¢ compare sample data with classification data and
establish the contingency matrix;

o calculate various types of errors from the
contingency matrix.

This can be applied to the determination of any type

of attribute error at the nominal measurement scale.

Precision refers to the closeness of measurements
obtained from the same object using the same
measurement method. It is related to the level of
details contained in the measurement. It can be
assessed by the standard deviation of a number of
measurements made from the same object (Gong et
al., 1995). Compatibility refers to how easy it is when
data collected for other purposes can be used in a
particular application. It also refers to how easy it is
when data from different sources or collected from
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different locations are used for the same application.
Generally, more specific data have better compatibility
than more general data because more specific data
can be generalized to general data but not vice versa.
For example, there may be two forest maps for two
neighboring regions but prepared with different
methods, or using different data sources. If the
content of one map can be made comparable with the
other, then the two maps are compatible. If only the
classification system needs to be adjusted to make one
map to be compatible with the other, we call that one
map can be “cross-walked” to the other. Consistency
refers to the level of agreement when a certain
phenomenon is represented in the database. For
example, if the same river looks different on two types
of maps, the level of consistency between the two maps
is poor. If the same terrain feature from two map
layers are represented by different number of contour
lines and/or different levels of smoothness of the
contours, the consistency between the two maps is
poor. If one map is made from data collected at one
time and a second map for the neighboring region is
made from data collected at a different time, then the
two maps may be temporally inconsistent.

There are primarily four types of errors in a GIS
database: positional, temporal, attribute, and logical.
Logical error refers to the inconsistency of relationship
among different features presented in a database. It
is usually manifested through other types of errors.
Thus, logical relationships of mapped features can be
checked for error detection. Positional error has been
widely investigated for its determination (Gong et al,

1995; Stanislawski et al., 1996; Kiiveri, 1997; Veregin,
2000), modeling (Zheng and Gong, 1997; Shi and Liu,
2000). Essentially, positional error is the error
contained in the coordinate values of points, lines and
volumes. Thus, it is one type of numeric errors.
Numeric error is relatively a simple type of spatial
data error. Currently, few GIS systems are truly
incorporating the temporal axis as an index that
supports explicit query in time. When time is not
explicitly used as an index like geographical
coordinates, it is treated as an attribute just as
elevation is treated in a 2D GIS. Thus, in most existing
GISs time and elevation are treated as attributes.

Error propagation and uncertainty detection has
attracted research attention for the past decade. The
following table lists some of the research papers done
in this field. Most of the papers deal with single
variable, and among them, a lot mentioned modelling
the spatial autocorrelation to estimate data
uncertainty. Consistency check between variables
from different sources has been introduced (Scott,
1994) which is the emphasis of this paper. Typical
approaches among various research are error
modeling, simulation, calculation and visualization,
etc (Table 1).

In the rest of the paper, we use example to discuss
how errors can be detected through consistency
checking in spatial databases. Discussions will be made
with a suggestion on the development of an spatial
data inconsistency checking mechanism in spatial
databases.

Table 1. Review of some of the recent error studies.

Paper Error Type Problem and solution Major
Approach
Ehlschlaeger,  positional Visualization approach is applied to view the elevation
1996 inconsistency surface change by applying a nonlinear interpolation Visualization
model to develop animations.
Single variable
Griffith, 1994  logical The standard error difference between area mean and ~ Modelling
inconsistency population mean causes bias in estimating population
mean.
Single variable Census tract data at Syracuse, New York is used in
calculating the underlying spatial autocorrelation in
estimating the standard error to get population mean
Heuvelink, logical Error propagation from different spatial variation Modelling
1995 inconsistency model fittings is discussed. Discrete Model of Spatial
Variation (DMSV), Continuous (CMSV), and Mixed
‘Single variable (MMSV) models with Netherlands high groundwater
level data are compared, and it is suggested to adopt
MMSV when undetermined.
Heuvelink, Single variable Errors of many models used in soil science come from  Simulation
1998 not only the input but also the model itself. The error

propagation process in data interpolation and
aggregation is discussed as well.
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Table 1. (to be continued)

Hunter, 1997 logical Slope and aspect uncertainties from realized models Modelling
inconsistency are considered. Spatial autoregressive random field is

treated as a disturbance to elevation, and a worst-case
Single variable  scenario by choosing a rho value within the domain of

0 and 0.25 is proposed.

“Uncertainty” includes “error”

Kiiveri, 1995 Positional The inconsistency through the polygon boundary Calculation,
inconsistency, change, length, perimeters and areas calculations are Simulation
polygon considered and calculated after the overlay operation
Single variable

Mowrer, 1996  Positional Monte Carlo technique of sequential Gaussian Simulation
inconsistency simulation is applied to estimate old-growth subalpine

forests. It is suggested to apply the technique with the
Single variable technology of GPS and GIS to improve decision
making

Phillips, 1995  attribute Simulation modeling is applied to measure Simulation
inconsistency uncertainties. Potential evapotranspiration model is

employed as a function of temperature, humidity, and
Multiple wind.
variables

Phillips, 1999 A major challenge in physical geography is discussed:

the detection of the signals of complex deterministic
dynamics in real landscapes and data. The nonlinear
dynamical system (NDA) theory is introduced,
approaches relevant to deterministic uncertainty are
reviewed and compared.

Scott, 1994 logical Exploratory Data Analysis (EDA) tool is introduced to  Modeling,
inconsistency help quality assessment and data integrity in GIS by Calculation

using statistical techniques. Four components are
Multiple listed (p384):
variables (1)distribution checks of both categorical and ratio
data;
(2)logical consistency checks of the relationships
between attribute data values and between attribute
classes;
(3) proximity checks of the spatial distribution of data
attributes; and
(4) plot and map reviews of the spatial distribution of
geographical features and their associated attributes

Shi, 1999 Positional G-band model is developed to handle positional error ~ Modelling
inconsistency of line segments. With end points normal distribution

assumption, stochastic process is applied to discuss

the uncertainties of end points as well as points on the

segments.
Stanislawski, Positional Positional accuracy (digitized points) is estimated by Modelling
1996 inconsistency dividing errors into absolute error and relative error,

single variable

while the absolute one represents horizontal
cartographic data accuracy, and the relative one
represents variability in spatial relationships.

and attribute. Spatial inconsistency is a process that
cartographers must deal with on an operational basis.
Map generalization is a major task of cartographers.
It includes spatial displacement (a process of spatial
error introduction), spatial simplification through
selection, aggregation and smoothing, and attribute

II. ERROR DETECTION THROUGH
CONSISTENCY CHECKING

We can divide inconsistency into spatial inconsistency,
temporal inconsistency, attribute inconsistency and
inconsistency among any combination of space, time
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abstraction through classification. This process itself
introduces a huge amount of error particularly on
small scale maps. Traditional spatial analysis based
on maps is restricted by map scale, as maps from
different scales can not be overlaid with each other
for multi-layer (variable) analysis. In a GIS system,
maps of the same spatial location can be enlarged or
reduced to map with each other regardless their

original scales. Spatial inconsistency could occur

under this circumstance.
An example of spatial inconsistency

Figure 1 shows a reservoir and a highway overlap with
each other as a result of overlaying a drainage map
with a transportation map. The highway extends at
the same side of the reservoir and the stream with no
reason for it to run over it. Provided that the maps
have the same scale and their projections and other
factors that control the geometrical properties of the
two maps are consistent, it is most likely that the
error is caused by some displacement of the reservoir
as highways are usually surveyed with high precision.
This situation could change if we over a large scale
drainage map with a small scale road map. Under
such circumstances, the error is most likely due to
the generalization of the roads on the road map.
Therefore, the ways of correcting the error, or at least
removing the inconsistency if we believe the error is
not correctable, vary with the actual situation. This
requires the knowledge of the scale and accuracy
report of each map if there exists any. The relevance
of metadata of spatial databases is obvious here.

Logical error detection of individual objects

Certain objects in a map database have logical
relationships with other objects. For example, a
parking lot should exit to a road. If a parking lot is by
itself without any entrance or exit, then there is a
logical error. Consider a bridge, it could either be
across a stream, river or another road and its two
sides should be connected to roads. These are the
knowledge that can be coded to automatically check if
there is any logical errors associated with each bridge.
Such logical error detection associated with bridges is

HWY HWY

Reservoir

One way of correcting the
error

Reservoir

Spatial inconsistency detected
between a reservoir and a
highway

Figure 1. Spatial inconsistency found in map overlay.

particularly useful in detecting errors of other
attributes that are connected to bridges. Figure 2
illustrates the situation for a parking lot and a bridge.
This method can be applied to any type of object whose
relationship with other objects can be logically
expressed.

Attribute error identification through logical
consistency checking among different map
layers

In a spatial database, data are often organized in
different map layers. Each map layer may be obtained
from different sources. Attribute error on one map
layer may not be detected without being compared
with attribute data from other map layers. For
example, a forest fire history map contains the
distribution of burnt areas with an attribute of time
of fire occurrence (e.g., Figure 3a). Are there any
mistakes in the fire history records? Some such errors
may be detected when the fire history map is overlaid
onto an up-to-date forest cover map (e.g., Figure 3b).
Fire history records can be checked according to the
current stage of forest restoration. In the example as
shown in Figure 3, the two fire occurrence times
should obviously be exchanged because they are not
consistent with the age of the vegetation.

The simple example illustrated in Figure 3 indicates
that consistency checking between maps from different
sources may be a useful tool in attribute error
detection. In the following, we examine some real
map layers of central California.

Knowing how the maps are made helps us to detect
attribute errors. From Figure 4, it is obvious that
the urban area determined from the DMSP city light
data is largely exaggerated. This is partly caused by
the poor spatial resolution of the city light data (1 km
resampled from the original 600 m) and the less
accurate city light intensity thresholding algorithm
applied in urban area detection. It can be considered
as the extreme end of over-commission of urban land
in the mapped area. Almost any area not included in
the urban area determined from the city light data is
not likely to be urban. The urban area from the other

Parking Parking
lot lot

L ] L J

Y —y 1 |
Logical error related to parking Logical error corrected for
lot and bridge parking lot and bridge

Figure 2. Logical inconsistencies associated with
individual objects
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1965/

shrub

1996/
Conifer
forest
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a. Fire history map

b. Fire history map overlaid
with forest cover map

Figure 3. An example of logical inconsistency between
two map layers. An old 1965 fire is now still covered
by shrub but a relatively new burnt area in 1996 is
covered by conifer forest. If the forest map is
considered as correct, the age of the fires should be
switched between the two fires.

two map sources are relatively consistent except at
the lower left corner where there is a large tract of
urban land only claimed by the USGS source.
Therefore, before any other verification we are almost
certain that it is an attribute error over that tract of
land. The particular error in the USGS data layer
was verified by road density and Landsat TM imagery.

III. DISCUSSIONS

From the illustrations in the above section, it can be
seen that inconsistency is a useful indicator of spatial
data errors. Inconsistency may exist on a single map
layer or among different map layers. Inconsistency

can be detected automatically. This requires a good
knowledge of various characteristics of spatial data.
Inconsistency checking should be made in at least four
aspects: self checking of data completeness such as
various spatial, attribute components of an object
represented in the database; spatial consistency among
neighbors of objects; multivariable (multi-attribute)
consistency through comparison; and spatial
consistency among multiple variables. It is expected
that the level of complexity in consistency checking
increases in a similar order. Some of the corrections
for spatial errors as reflected by inconsistency can be
done automatically while it is more appropriate to
correct errors or reduce uncertainties through an
interactive process.

Like a spelling checker in a word processing software,
an inconsistency checker is envisioned that is
developed for each database. It can be fired to run in
the batch mode or at the background once new data
are added into the database. Some detected
inconsistencies are corrected according some rules and
are highlighted while some others are left uncorrected.
All inconsistencies should be recorded to alert data
analysts for final correction decision. Some special
visualization tools can be used for the purpose of
inconsistency warning. A mechanism should be built
for database manager and data users to track changes
made to data and to allow for reverse processing
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Figure 4. Urban land use from East San Francisco Bay across great central valley to part of Sierra Nevada.
Data are obtained from three sources: Census Population Density data in pattern bounded in green, USGS
Land Use and Land Cover data in brown, and urban area in white determined from the city light data from the
Defense Meteorological Satellite Program (DMSP). For the color format of this figure, see cover page.
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should automatic correction is considered done
inappropriately.
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