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Abstract

Hyperspectral data compression and dimension reducing are very important to computer processing and data
transmission. A small number of bands, containing relatively large amount of spectral information, are usually
sufficient to many application purposes. Therefore, how to select a small number of bands without loss of much
information from all the bands is a critical issue. In this paper, a method of band selection using band prioritization
with peak values of sum of 30-eigenvector pertinent to principal component analysis (PCA) was developed. An error
back-propagation neural network (NN) algorithm was applied to evaluate the effectiveness of the band selection
method in forest species recognition. The results show that, when entering NN with 6-20 bands selected from a
total of 161 bands of hyperspectral data for identifying six conifer species, the average recognition accuracy
improvement of 11.20% can be obtained using the new band selection method over the method of equal-interval

band selection.

I. INTRODUCTION

Hyperspectral data with hundreds of spectral bands
in very narrow intervals allow us not only to measure
diagnostic spectral features in geology survey (Goetz
et al., 1985) but also to estimate biophysical and
biochemical parameters such as leaf area index (LAT)
(e.g., Gong et al., 1995 and 1992), conifer species
identification (e.g., Gong et al., 1997 and Yu et al.,
1999), biochemical constituents ( Card et al., 1988;
Johnson et al., 1994; Matson et al., 1994; Peterson et
al., 1988; and Wessman et al., 1989), and
decomposition of spectral mixture pixels (Boardman,
1989 and Gong et al., 1994). as well as to apply to
other fields (e.g., atmosphere). But such data,
compared to multispectral data, create enormous
amounts of data for computer processing and data
transmission. To mitigate this problem, a data
compression is generally used to reduce data volume
(Chang et al., 1999). And a variety of feature extraction
techniques can also be used to reduce data magnitude
(e.g., band subset directly selected from total bands
and Karhunen-Loeve (i.e., hereafter called principal
component analysis, PCA) transformation in spectral
dimension). In existing band selection methods, we
can generally classify them into two categories: bands
selected based on class separability or prediction
effectiveness with the subset of bands and based on
band prioritization related to PCA transformation. For
examples, in the first category, Hardie et al. (1998)
selected spectral bands based on a class separability
criterion. They exhaustively search over all band
combinations using a separability metric to yield an

optimal K (k<N, total bands) band combination. A
search of a k-band combination with this method often
needs long time, especially when k is greater. The
best band combination selected by a stepwise
regression procedure is another way to get subset of
bands. Coleman et al. (1991) found the best
combination of bands, which efficiently quantifies
selected properties in highly weathered soils, based
on stepwise regression procedure. The two methods
to search the optimal band combination did not
consider removal of correlation among the selected
bands. Zhang (1994) studied five band selection
methods for testing the sensitivity of linear spectral
unmixing of forest species. All five methods did not
remove majority of correlation among the selected
bands mainly because separability among the end
species and background were used as a criterion. The
second type of band selection method is studied more
extensively. Csillag et al. (1993) classified salinity
status of soils based on hyperspectral data selected
using a modified step-wise principal component
analysis. In their study, the correlation among the
original bands chosen did not decrease as efficiently
as the “conventional” PCA. Thus there is still
redundant information among the bands selected. The
method proposed by Henderson et al. (1989) was based
on the greatest magnitude of eigenvectors and they
selected important wavelength region corresponding
to the magnitude of eigenvectors. As a result, there
is a greater correlation among the bands selected by
the method. Chang et al. (1999) researched on a joint
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band prioritization and band-decorrelation approach
to band selection for hyperspectral image
classification. The band prioritization was based on
an eigenanalysis and decomposed a matrix into an
eigenform matrix from which a loading factors matrix
could be constructed and used to priorize bands. The
band prioritization was then followed by a divergence-
based band decorrelation that used the divergence
measure to remove redundant or insignificant bands.
Their approach is a better one because they ranked
band prioritization not only considering the bands
selected with the greatest amount of signal but also
removing correlation and noise among and within
bands selected as completely as possible.

In this paper, we propose a band selection method in
part similar to one by Chang et al. (1999) but in a
different and simple way to remove the correlation
among the bands selected and to maintain a higher
amount of spectral signal in bands selected. The band
selection method based on band prioritization
pertinent to PCA transformation was used to classify
six conifer species from SD1000 spectrometer data
acquired from Blodgett Forest Research Station,
Department of Environmental Science, Policy and
Management, University of California at Berkeley.
The objectives of this study are:
»  to develop a band selection method based on band
prioritization pertinent to PCA; and
*  toevaluate the effectiveness of this method using
an error back-propagation neural network (NN)
algorithm for conifer species recognition.

II. DATA SOURCES AND METHODOLOGY
In Situ Hyperspectral Data Acquisition

In situ hyperspectral data were taken with an SD1000
spectrometer at Fenced site, Blodgett Forest Research
Station at four dates of 1997: May 20, July 21,
September 23, and November 28, 1997. Under the
natural light condition, only spectral reflectance data
between 350 and 900 nm in 980 bands can be
employed. Outside this range, spectral data are too
noisy to be used. The spectral resolution is
approximately 2.6 nm. At each date, we took a total
of 144 spectra from six conifer species: Douglas fir,
giant sequoia, incense cedar, ponderosa pine, sugar
pine and white fir, with each measuring six trees and
taking four samples per tree, two from sunlit side and
other two from shaded side.

For the purpose of this paper we first merged and
calculated average per six consecutive bands and led
to 163 merged bands with a band width of 3.4 nm.
Then every spectrum r; was normalized through

1’ =r/>(r). Finally, the first-order derivative of each
spectrum was calculated from the normalized spectrum
for testing the band selection method. Each available
spectral sample includes 161 bands.

Band Selection with Band Prioritization
Pertinent to PCA

PCA technique has been widely applied in data
compression and feature extraction. It transforms data
coordinates in such a way that first principal
component vector is along the direction of maximum
variance. It then maximizes the variance in successive
components.

Suppose a data-sample covariance matrix can be
obtained through following expression:

1Y
=% ‘E‘(Xk —m)(X —m)’ 1)
(=1

where, x, is the kth /[-dimension spectral vector, m is
sample-mean vector, NN is the total number of spectra,
and / is the data dimension (i.e., total number of
bands). Since the 3 is a symmetric and nonnegative
definite matrix, all its eigenvalues 1)/, are real and
nonnegative, and its corresponding /-dimensional
eigenvectors g=(g,,8,...4,) fori=12.,1 can be
chosen to be orthonormal. we can define loading
factors v: associated with gz for PCA transformation
as

Vi = AiBa for xk=12,..1. 2)
Based on Chang et al. (1999), for each =12, ../,

P defined by
1

P =270k @)
i=1

is indeed the variances} of the £th band samples.
Summing upy2 over & in (3) for each ;=1,2,..,/ also
yields

I
A= ZY& ' )
k=1

So from (3) and (4), 3 pe= 4.

k=1 =1

Since (3) also represents variance o3 of the £th band

samples, we can define p; = Zy 2 to be an approximately
=1

varianceg} of the kth band samples when the
cumulative contribution rate of the first m (m<I)
principal components can account for the majority of
total variance of samples (e.g., greater than 95%).
From all pifor #=12,.../, we can always find s (s</)
bands corresponding to peak values of p/, which
defined as following:

lf p_//'—l < pj’ >P_’,'+1 fOl‘ ji=1 2w le (5)
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then jth band is selected as one corresponding to peak
values of p; . Without loss of generality, we can assume
that p/>p3>..2p;. Although we can not select the first
s highest-p; bands to be equivalent to finding s
principal variables withy, >, >..>2,, we maintain a
selection of suboptimal band combination, and at same
time also keep a low correlation among the bands
selected because we did not select those neighbor
bands, between which there generally exists a higher
correlation. This is particularly true for hyperspectral
data (Jia and Richards, 1994). For practical purposes,
if only needing number of bands less than s like in
this paper, we may select the first several bands based
on the band prioritization withp/ 2 p5 2.2 p!. To test the
function of individual eigenvectors in band selection,
we also found out the bands corresponding to absolute
peak values of the first several eigenvectors and
selected bands based on the band prioritization similar
to the above. Because band selection is based on the
band prioritization with peak values pertinent to
eigenvectors of PCA, we briefly name the band
selection method as BPPCA.

Back-Propagation Neural Network

The supervised error back-propagation neural network
(NN) algorithm is used to evaluate the effectiveness
of the band selection method with BPPCA. In Pao
(1989), a supervised NN algorithm is introduced in
details. The NN algorithm has been explored by many
researchers on classification using both remote
sensing data and other kinds of the data (e.g., Hepner
et al., 1990; Yin et al., 1991; Chen et al., 1993; Gong,
1996; and McCormack et al., 1993).

In this study, because there is not a more effective
method that can be applied to evaluate the
effectiveness of band selection for recognizing conifer
tree species, the NN algorithm was used to generate
identification accuracy of tree species with 6 to 20
bands selected by BPPCA. Different accuracies of tree
species recognition were produced by the NN using
testing samples, with same parameters adjusted
during the training of the NN. These include learning
rate( 1), momentum coefficient ( ¢, ), number of
hidden layer nodes etc.(Rumelhart et al., 1986).
Various numbers of bands selected with BPPCA were
input to the NN. In the meantime, the species
recognition accuracies of bands selected with an equal-
interval band selection (EIBS) were calculated by NN
with the same parameters and the same number of
bands. The accuracy differences between those by
BPPCA and those by EIBS were then compared.

Procedure

The following procedure was used in this study:

» Step 1. Prepare data for calculating covariance
matrix for each data set of 4 dates, including
merging original bands, light normalization, the
first derivative and mean vector calculation.

+ Step 2. Solve the K-L equation for each data set to
calculate its eigenvalues and corresponding
eigenvectors.

mn

* Step 3. Separately calculate sl = 7i for each data

i=1

set and find bands corresponding to peak values
of p, then rank band prioritization with
a=ps>..2p. . In this study, m=30, i.e., using 30
eigenvectors. For testing individual eigenvectors,
the bands corresponding to absolute peak values
of the first several eigenvectors were found and
band prioritization was ranked with the same way
as that using 30 eigenvectors.

 Step 4. Select bands based on the band prioritization
generated at step 3. Select different numbers of
band subsets, from 6 to 20 bands, with BPPCA 30-
eigenvector, individual eigenvectors and EIBS,
respectively.

e Step 5. Calculate accuracies of tree species
identification from selected band subsets with
different numbers of bands using the NN and the
test samples of each data set. Three sets of
recognition accuracies, in the same time, were
obtained: two were for band subsets selected with
BPPCA and the other for those bands chosen with
EIBS. In calculation, the parameters used for
running NN for the three sets of selected bands
were the same. For each NN, training continued
to be executed until the highest identification
accuracy from test data set was reached.

» Step 6. Analyze identification accuracies. For every
three band subsets from BPPCA and EIBS, the
identification accuracies were compared.

III. RESULTS AND ANALYSIS

Input the four data sets each with 144 spectra and
each spectrum with a total of 161 bands for executing
principal component analysis with an SAS procedure
PRINCOMP (SAS Institute, Inc., 1991). Figure 1
presents four the first eigenvector from the four data
sets and Figure 2 shows sum of 30 square loading
factors from 30-eigenvector. From Figures 1 and 2,
the wavelength positions corresponding to peak values
are very consistent among the four data sets. This
indicates that more important bands are basically same
among the four data sets. After taking a close look at
those curves, the greater peak values can be found to
locate in red edge (670-726 nm), blue edge (490-530
nm) and green peak (540-565 nm). This is agreement
with the conclusion drawn from our previous work
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Figure 1. The first eigenvector for four data sets.

(Gong et al., 1997), i.e., the spectra within visible region
may contain more spectral information than that in
near infrared region. The contribution and cumulative
contribution rates of the first three and the first thirty
eigenvectors are listed in Table 1. From the table,
the total variances for the four data sets can be
accounted for >50%, >67% and >95% by the first one,
three and thirty eigenvectors, respectively. According
to peak-value-based band prioritization, different
numbers of band subsets were selected from 30-
eigenvector and individual eigenvectors (first three),
respectively. For bands selected from individual
eigenvectors, the numbers of bands each selected from
the first three eigenvectors followed Table 2. As a
result, the numbers of band selected with BPPCA and
EIBS range from 6 to 20.

The NN using the GDR was adapted from Pao (1989).
Structure of neural network of three layers was used
for recognizing tree species. The numbers of nodes
in the input layer were the numbers of bands selected
(i.e. anode = a band ). The numbers of nodes at
hidden layer were 10 or 15. The six nodes in the
output layer corresponded to six tree species. Other
NN parameters were adopted after trial and error:
learning factor (N ) = 0.2, momentum rate (¢, ) = 0.6
or 07, and number of iterations was less than 2000.
For the four data sets, each was divided into two
subsets: one for training NN, 48 samples, and other

160

5

= may 30beta

——e—— Ul 30beta

sep30beta

———— nov30beta

Sum of 30 beta*2"ramda(X10,000)

o

355 390 426 461 495 530 564 598 632 666 699 732 765 798 831 863 895
Wavelength (nm)

Figure 2. Sum of 30 square loading factors from 30-
eigenvector

for testing the trained NN, 96 samples. The data in
the input layer and output layer were normalized to
the range of [0,1] to make it easier for NN to converge
at the training stage. The recognition accuracies were
calculated from the classification results using test
samples compared to actual tree species recorded when
taking measurements in the field.

In this study, the testing results in Table 3 were
obtained from the NN with different numbers of bands
selected from the four data sets and different band
selection methods. From the table, although the
accuracies from 30-eigenvector are not always the
highest for all numbers of bands selected from all
individual data sets, we can see that for all numbers
of bands selected with BPPCA from 30-eigenvector,
the average identification accuracies from the four
data sets are higher than (average increasing 11.20%)
those from EIBS. And those from singular
eigenvectors are also higher than (average increasing
7.00%) those from EIBS except 20 bands selected.
With BPPCA 30-eigenvector, the optimal results were
generated from Sep’97 data with average accuracy
increased 24.43% compared to that with EIBS and the
least improvement was related to Nov’97 data. When
we consider advantages from BPPCA 30-eigenvector,
this is because bands selected based on band
prioritization with peak values of sum of 30-eigenvector
can not only account for majority of total variances

Table 1. Contribution and cumulative contribution rates of the first thirty eigenvectors

Eigenvector May' 97 Jul' 97 Sep' 97 Nov' 97
Con. Cum.-Con.| Con. Cum.-Con.| Con. Cum.-Con.| Con. Cum.-Con.
Bl 0.5459 0.5459 0.5355 0.5355 0.4959 0.4959 0.5346 0.5346
[32 0.0727 0.6186 0.0963 0.6318 0.1282 0.6241 0.0818 0.6164
B3 0.0629 0.6815 0.0430 0.6748 0.0636 0.6877 0.0540 0.6704
BSO 0.0031 0.9506 0.0028 0.9476 0.0030 0.9481 0.0023 0.9606

Note: Con.--contribution rate; Cum.-Con.--cumulative contribution rate.
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Table 2. Number of bands selected based on singular
eigenvectors

# band
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included in spectral samples but also reduce or remove
the correlation between the bands selected. Since
using only the first three eigenvectors that account
for about 67% of total variance, the accuracies with
bands selected from singular eigenvectors were not
high as those from 30-eigenvector. For the unstable
results with BPPCA 30-eigenvector from Nov’97,
May’97 and Jul’97 data, it can be explained as bands
selected without de-noise that might result in lower
accuracies, especially when the number of bands
selected is close to 20.

In general, if band selection is simply made using
EIBS, then more redundant information maybe
included, which does not offer much help in tree spe-
cies recognition. In addition, the phenomenon of rela-
tively large correlation among bands can clearly pro-
duce lower accuracy for recognizing tree species com-
pared to BPPCA. We are not able to explain why the
identification accuracies with 18 bands from May’97
data, 20 and 14 bands from Nov'97 data selected by
the EIBS were higher than those with BPPCA. An
explanation to this might be that all possible subsets
of bands selected in the randomly sampling method
(EIBS is a kind of random band selection method) in-
volve some band subsets that can be effectively used
for recognizing tree species, even better that with
BPPCA. However, most of these band subsets are

less effective compared with those from the BPPCA
method. Therefore, according to our experimental
results, if the number of bands selected is less than
20 bands, the BPPCA 30-eigenvector method used in
this study is effective for recognizing tree species.

IV. SUMMARY

In this paper, a band selection method using band
prioritization with peak values of sum of 30-eigenvector
pertinent to PCA was developed to recognize six conifer
species with May’97, Jul’97, Sep’97 and Nov’97
hyperspectral data measured at Blodgett Forest
Research Station, Department of Environmental
Science, Policy and Management, University of
California at Berkeley. The experimental results show
that, when 6-20 bands were selected from a total of
161 bands, the average identification accuracies of tree
species using the new method can be 11.20% higher
than those with the method of equal-interval band
sampling. The band selection method introduced in
this paper is not complete and needs further
improvement. In both band selection methods, one
developed in this paper and other developed in 1996
(Pu and Gong, 1996), there all exists a shortage to be
improved, which is that noise mixed in spectra is not
accurately estimated and further removed from
spectral signal under considering band selection. We
propose to make effort on the de-noise issue to
improve band selection method in the future.
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Table 3. Summary of accuracy comparison of species recognition with bands selected by BPPCA 30-
eienvector, singular eigenvectors and EIBS.

#band May'97 Jul'97 Sep'97 Nov'97 Average
EIBS 30V SingV | EIBS 30V SingV | EIBS 30V SingV | EIBS 30V SingV| EIBS 30V __ SingV
20 89.6 906 90.6 | 78.1 813 823 | 958 969 896 | 792 760 792 | 857 862 854
18 958 885 927 | 740 885 8.5 | 813 969 8.5 | 740 781 750 | 813 8.0 857
16 80.2 875 917 | 729 823 792 | 823 938 885 | 719 8.2 698 | 768 86.0 823
14 77.1 885 875 | 729 781 792 | 875 885 875 | 75.0 698 646 | 781 812  79.7
12 77.1 802 833 | 698 698 77.1 | 70.8 917 844 | 604 740 61.5| 695 189  76.6
10 708 78.1 78.1 | 604 688 70.8 | 646 91.7 854 | 594 615 656 | 63.8 750 750
8 719 760 719 | 583 625 552 | 583 875 813 | 625 625 719 | 628 721  70.1
6 51.0 667 563 | 542 552 469 | 521 90.6 615 | 542 573 604 | 529 675 563
Mean | 767 82.0 815 | 676 733 722 | 741 922 833 | 67.1 699 685 | 714 794 764

Note: EIBS—equal-interval band selection; 30V —band selection based on the sum of 30 the first thirty eigenvectors; SingV—band
selection based on individual eigenvectors (1* three); and underlines indicate the highest accuracy per dated data and per number

of band selected.
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